Current Genetics

, Volume 7, Issue 3, pp 175–183 | Cite as

Cloning of the δ-aminolevulinic acid synthase structural gene in yeast

  • M. Arrese
  • E. Carvajal
  • S. Robison
  • A. Sambunaris
  • A. Panek
  • J. Mattoon


HEM1, the structural gene for δ-aminolevulinic acid synthase, has been isolated on recombinant plasmids. A yeast genomic pool constructed in the E. coli — yeast shuttle vector YEp13 was used to clone the HEM1 gene by complementation. A leu2 hem1 yeast mutants was transformed with the yeast genomic pool and hybrid YEp13 plasmids carrying the HEM1 gene were cloned by their ability to complement both the leu2 and hem1 mutations in the recipient strain. The yeast transformants, bearing the HEM1-containing plasmids pYe(HEM1), showed a 24–28 fold increase in δ-aminolevulinic acid synthase activity and in the intracellular content of δ-aminolevulinic acid (5–8 fold) as compared to wild type strains, suggesting that the p(HEM1) gene is being expressed as a catalytically active enzyme which can be transported into the mitochondria. However, the transformant strains did not present higher-than-normal content of heme or cytochromes either in glucose or in glycerol media, indicating that the production of δ-aminolevulinic acid is not the rate-limiting step in heme biosynthesis in yeast.

Key words

Saccharomyces δ-Aninolevulinic acid synthase Cloning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki Y, Wada O, Urata G, Takaku F, Nakao K (1971) Biochem Biophys Res Commun 42:568–575Google Scholar
  2. Bard M, Woods RA, Haslam J (1974) Biochem Biphys Res Commun 56:324–330Google Scholar
  3. Beattie DS, Stuchell RN (1970) Arch Biochem Biophys 139:291–297Google Scholar
  4. Beggs JD (1978) Nature (London) 275:104–109Google Scholar
  5. Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133Google Scholar
  6. Broach JR, Hicks JB (1980) Cell 21:501–508Google Scholar
  7. Brooker JD, May BK, Elliot WH (1980) Eur J Biochem 106:17–24Google Scholar
  8. Burnham BF, Lascelles J (1963) Biochem J 87:462–472Google Scholar
  9. Carvajal E, Borralho LM, Panek AD, Mattoon JR (1980). Tenth International Conference of Yeast Genetics and Molecular Biology. Louvain-La-Neuve, Belgium, p 140Google Scholar
  10. Clark-Walker GD, Rittenberg B, Lascelles J (1967) J Bacteriol 94:1648–1655Google Scholar
  11. Clewell DB (1972) J Bacteriol 110:667–676Google Scholar
  12. Chevallier MR, Aigle M (1979) FEBS Lett 108:179–180Google Scholar
  13. Gollub EG, Liu K, Dayan J, Adlersberg M, Sprinson DB (1977) J Biol Chem 252:2846–2854Google Scholar
  14. Granick S, Sassa S (1971) δ-aminolevulinic Acid Synthetase and the control of heme and chlorophyll synthesis. In: Vogel JH (ed) Metabolic Pathways, vol. 5. Acad Press, New York, pp 77–141Google Scholar
  15. Hawthorne DC, Mortimer RK (1960) Genetics 45:1085–1110Google Scholar
  16. Hayashi N, Yoda B, Kikuchi G (1969) Arch Biochem Biophys 131:83–91Google Scholar
  17. Jayaraman J, Padmanaban G, Malathi K, Sarma PS (1971) Biochem J 121:531–535Google Scholar
  18. Lis JT, Schleif R (1975) Nucl Acid Res 2:383–389Google Scholar
  19. Mahler HR, Lin CC (1974) Biochem Biophys Res Commun 61:963–970Google Scholar
  20. Mahler HP, Lin CC (1978) J Bacteriol 135:54–61Google Scholar
  21. Malamud DR, Borralho LM, Panek AD, Mattoon JR (1979) J Bacteriol 138:799–804Google Scholar
  22. Mandel M, Higa A (1970) J Mol Biol 53:159Google Scholar
  23. Mattoon JR, Malamud DR, Brunner A, Braz G, Carvajal E, Lancashire WE, Panck AD (1978) Regulation of heme formation and cytochrome biosynthesis in normal and mut ormal and mutant yeast. In: Bacila M, Horecker B, Stoppani AOM (eds) Biochemistry and genetics of yeast, pure and applied aspects. Academic Press, New York, pp 317–337Google Scholar
  24. Mauzerall D, Granick S (1956) J Biol Chem 219:435–446Google Scholar
  25. McKay R, Druyan R, Getz GS, Raminowitz M (1969) Biochem J 114:455–461Google Scholar
  26. Nasmyth KA, Reed SI (1980) Proc Natl Acad Sci USA 77:2119–2123Google Scholar
  27. Poulson R (1976) Ann Clin Res 8:56–63Google Scholar
  28. Sanders HK, Mied PA, Briquet M, Hernandez-Rodriguez J, Gottal RF, Mattoon Jr (1973) J Mol Biol 80:17–39Google Scholar
  29. Sassa S, Granick S (1970) Proc Natl Acad Sci USA 67:517–522Google Scholar
  30. Scholnick PL, Hammaker LE, Marver HS (1972) J Biol Chem 247:4132–4137Google Scholar
  31. Shemin D, Russell CS, Abramsky T (1955) J Biol Chem 215:613–626Google Scholar
  32. Sinclair PR, Granick S (1975) Ann NY Acad Sci 244:509–520Google Scholar
  33. Strand LJ, Manning J, Marver HS (1972) J Biol Chem 247:2820–2827Google Scholar
  34. Struhl K, Cameron JR, Davis RW (1976) Proc Natl Acad Sci USA 73:1471–1475Google Scholar
  35. Urban-Grimal D, Labbe-Bois R (1981) Mol Gen Genet 183:85–92Google Scholar
  36. Woods RA, Sanders HK, Briquet M, Foury F, Drysdale B, Mattoon JR (1975) J Biol Chem 250:9090–9098Google Scholar
  37. Yamauchi K, Hayashi N, Kikuchi G (1980) FEBS Lett 115:15–18Google Scholar
  38. Yamauchi K, Hayashi N, Kikuchi G (1980) J Biol Chem 255:1746–1751Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. Arrese
    • 1
  • E. Carvajal
    • 2
  • S. Robison
    • 1
  • A. Sambunaris
    • 1
  • A. Panek
    • 2
  • J. Mattoon
    • 1
  1. 1.Department of Biology, College of Letters, Arts and SciencesUniversity of ColoradoColorado SpringsUSA
  2. 2.Departamento de Bioquímica, Instituto de QuímicaUniversidade Federal do Rio de JaneiroBrasil

Personalised recommendations