Current Genetics

, Volume 9, Issue 6, pp 495–503

Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes

  • F. Quigley
  • J. H. Weil
Article

Summary

The genes for the initiator tRNACAUMet. tRNAUCCGly, tRNAGGUThr, tRNAUUCGlu and tRNAGUATyr and an open reading frame of 62 codons have been identified by sequencing a 2,358 by BamHl and a 1,378 by BamHI-Sst2 DNA fragments from wheat chloroplasts. A comparison of the organization of these five tRNA genes and of the open reading frame on the wheat, tobacco and spinach chloroplast genomes suggests that at least three genomic inversions must have occurred during the evolution of the wheat chloroplast genome from a spinach-like ancestor genome. Furthermore, it seems that in wheat the 91 by intergenic region between the genes for the initiator tRNAMet and the gene for tRNAUCCGly is one end-point of the 20 kbp genomic inversion proposed by Palmer and Thompson in the case of maize (Palmer and Thompson 1982). A 119 bp duplication is located at this junction: the first copy comprises the 91 by of the intergenic region and the first 28 by of the tRNAMet gene, the second copy is found downstream of the tRNAMet gene.

Key words

Chloroplast tRNA genes URF Chloroplast genome evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt J, Winter P, Sebald W, Moser JG, Schedel R, Westhoff P, Herrmann RG (1983) Curr Genet 7:129–138Google Scholar
  2. Alt J, Morris J, Westhoff P, Herrmann RG (1984) Curr Genet 8:597–606Google Scholar
  3. Bedbrook JR, Link G, Coen DM, Bogorad L, Rich A (1978) Proc Natl Acad Sci USA 75:3060–3064Google Scholar
  4. Bohnert HJ, Crouse EJ, Schmitt JM (1982) In: Parthier B, Boulter D (eds) Encyclopedia of plant physiology, nucleic acids and proteins in plant II. Springer, Berlin Heidelberg, New Series 14B:475–530Google Scholar
  5. Bowman CM, Koller B, Delius H, Dyer TA (1981) Mol Gen Genet 183:93–101Google Scholar
  6. Bowman CM, Bonnard G, Dyer TA (1983) Theor Appl Genet 65:247–262Google Scholar
  7. Canaday J, Guillemaut P, Weil JH (1980) Nucleic Acids Res 8:999–1008Google Scholar
  8. Clewell DB, Helinski DR (1969) Proc Natl Acad Sci USA 62:1159–1166Google Scholar
  9. Crouse EJ, Bohnert HJ, Schmitt JM (1984) Chloroplast RNA synthesis. In: Ellis RJ (ed) Chloroplast biogenesis, Seminar Series of the Society for Experimental Biology. Cambridge University Press, 21:83–136Google Scholar
  10. Deno H, Sugiura M (1983) Nucleic Acids Res 11:8407–8414Google Scholar
  11. Deno H, Sugiura M (1984) Proc Natl Acad Sci USA 81:405–408Google Scholar
  12. Deno H, Shinozaki K, Sugiura M (1983) Nucleic Acids Res 11:2185–2191Google Scholar
  13. Ecarot-Charrier B, Cedergren RS (1976) FEBS Lett 63:287–290Google Scholar
  14. Fluhr R, Edelman M (1981) Nucleic Acids Res 9:6841–6853Google Scholar
  15. Holschuh K, Bottomley W, Whitfeld PR (1983) Nucleic Acids Res 11:8547–8554Google Scholar
  16. Holschuh K, Bottomley W, Whitfeld PR (1984a) Plant Mol Biol 3:313–317Google Scholar
  17. Holschuh K, Bottomley W, Whitfeld PR (1984b) Nucleic Acids Res 12:8819–8834Google Scholar
  18. Hopp TP, Woods KR (1981) Proc Natl Acad Sci USA 78:3824–3828Google Scholar
  19. Howe CJ, Auffret AD, Doherty A, Bowman CM, Dyer TA, Gray JC (1982) Proc Natl Acad Sci USA 79:6903–6907Google Scholar
  20. Howe CJ, Bowman CM, Dyer TA, Gray JC (1983) Mol Gen Genet 190:51–55Google Scholar
  21. Krebbers E, Steinmetz A, Bogorad L (1984) Plant Mol Biol 3:13–20Google Scholar
  22. Krebbers ET (1983) Characterization of some Zea mays chloroplast genes. PhD thesis, Harvard University, Cambridge, MassGoogle Scholar
  23. Kung SD, Zhu YS, Shen GF (1982) Theor Appl Genet 61:73–79Google Scholar
  24. Kuntz M, Weil JH, Steinmetz AA (1984) Nucleic Acids Res 12:5037–5047Google Scholar
  25. Michel F, Dujon B (1983) EMBO J 2:33–38Google Scholar
  26. Ohme M, Kamogashira T, Shinozaki K, Sugiura M (1984) Nucleic Acids Res 12:6741–6749Google Scholar
  27. Palmer JD, Thompson WF (1982) Cell 29:537–550Google Scholar
  28. Quigley F, Grienberger JM, Weil JH (1985) Plant Mol Biol 4:305–310Google Scholar
  29. Rasmussen OF, Stummann BM, Henningsen KW (1984) Nucleic Acids Res 12:9143–9153Google Scholar
  30. Schwarz Z, Jolly SO, Steinmetz AA, Bogorad L (1981) Proc Natl Acad Sci USA 78:3423–3427Google Scholar
  31. Smith AJH (1980) Methods Enzymol 65:560–580Google Scholar
  32. Sprinzl M, Gauss DH (1984) Nucleic Acids Res 12:r59-r132Google Scholar
  33. Steinmetz AA, Krebbers ET, Schwarz Z, Gubbins EJ, Bogorad L (1983) J Biol Chem 258:5503–5511Google Scholar
  34. Sugita M, Sugiura M (1984) Mol Gen Genet 195:308–313Google Scholar
  35. Sugita M, Kato A, Shimada H, Sugiura M (1984) Mol Gen Genet 194:200–205Google Scholar
  36. Vedel F, Lebacq P, Quetier F (1980) Theor Appl Genet 58:219–224Google Scholar
  37. Westhoff P, Nelson N, Bunemann H, Herrmann RG (1981) Curr Genet 4:109–120Google Scholar
  38. Zurawski G, Bottomley W, Whitfeld PR (1984) Nucleic Acids Res 12:6547–6558Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • F. Quigley
    • 1
  • J. H. Weil
    • 1
  1. 1.Institut de Biologie Moléculaire et Cellulaire du CNRSUniversité Louis PasteurStrasbourgFrance
  2. 2.Université de Grenoble ILaboratoire de Physiologie Cellulaire VégétaleSaint-Martin-d'HéresFrance

Personalised recommendations