Comparison of renal function and psychomotor performance in workers exposed to elemental mercury

  • H. Roels
  • R. Lauwerys
  • J. P. Buchet
  • A. Bernard
  • A. Barthels
  • M. Oversteyns
  • J. Gaussin
Original Papers

Summary

Renal function and psychomotor performance (eye-hand coordination, arm-hand steadiness) of a group of 43 workers exposed to mercury vapor were examined. Their mean age and average duration of exposure to mercury were 38 and 5 years, respectively. The results were compared with those obtained in a matched group of 47 control workers. Increased proteinuria and albuminuria were found slightly more prevalent in the Hg-exposed group than in the control workers. These results are in agreement with those found during a previous study carried out in another group of workers also exposed to elemental mercury (Bucket et al. 1980). The scores of the psychomotor tests were less satisfactory in the Hg workers than in the control workers, the arm-hand steadiness test being more discriminative than the eye-hand coordination test. Preclinical changes in psychomotor function can be detected independently of the presence of signs of renal dysfunction. No clear-cut relationships were found between the prevalence of abnormal psychomotor scores and the level of mercury in blood (HgB) or in urine (HgU). Increased prevalences of abnormal psychomotor scores seem however to occur for HgB between 1 and 2 μg/100 ml and for HgU between 50 and 100 μg/g creatinine. Therefore, a biologic threshold limit value of 50 μg/g creatinine is proposed for urinary mercury to prevent the development of preclinical effects on the central nervous system. A similar critical HgU level based on renal dysfunction prevalences has been suggested in a previous study.

Key words

Elemental mercury Kidney Psychomotor function Preclinical changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger E, Jans H (1978) Mercury poisoning and nephrotic syndrome in two young siblings. Lancet 2:951Google Scholar
  2. Bell ZG, Lovejoy HB, Vizena TR (1973) Mercury exposure evaluations and their correlation with urine mercury excretion. 3. Time-weighted average (TWA) mercury exposures and urine mercury levels. J Occup Med 15:501–508Google Scholar
  3. Bernard A, Roels H, Hubermont G, Buchet JP, Masson PL, Lauwerys RR (1976) Characterization of the proteinuria in cadmium-exposed workers. Int Arch Occup Environ Health 38:19–30Google Scholar
  4. Bernard A, Vyskočil A, Lauwerys R (1981) Determination of β 2-microglobulin in human urine and serum by latex immunoassay. Clin Chem 27:832–837Google Scholar
  5. Berode M, Guillemin MP, Martin B, Balant L, Fawer R, Droz PO, Madelaine P, Lob M (1980) Evaluation of occupational exposure to metallic mercury and of its early renal effects. In: Holmstedt B, Lauwerys R, Mercier M, Roberfroid M (eds) Mechanisms of toxicity and hazard evaluation. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 371–374Google Scholar
  6. Buchet JP, Roels H, Bernard A, Lauwerys R (1980) Assessment of renal function of workers exposed to inorganic lead, cadmium or mercury vapor. J Occup Med 22:741–750Google Scholar
  7. Cambiaso CL, Riccomi H, Sindic C, Masson PL (1978) Particle counting immunoassay (PACIA). II. Automated determination of circulating immune complexes by inhibition of the agglutination activity of rheumatoid sera. J Immunol Methods 23:29–50Google Scholar
  8. Clarkson TW (1979) Effects-General principles underlying the toxic action of metals. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook of the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 99–117Google Scholar
  9. Druet P, Druet E, Potdevin F, Sapin C (1978) Immune type glomerulonephritis induced by HgCl2 in the Brown Norway rat. Ann Immunol 129C:777–792Google Scholar
  10. Gaultier M, Fournier E, Gervais P, Morel-Maroger L, Bismuth C, Rain JD (1968) Deux cas de syndrome néphrotique dans une fabrique de thermomètres. Soc Méd Hôpitaux de Paris 119:47–61Google Scholar
  11. Heinegård D, Tiderström G (1973) Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta 43:305–310Google Scholar
  12. Henry RJ (1965) Clinical chemistry. Principles and technics, 3rd ed. Harper & Row, New YorkGoogle Scholar
  13. Langolf GD, Chaffin DB, Whittle HP, Henderson R (1977) Effects of industrial mercury exposure on urinary mercury EMG and psychomotor functions. In: Brown SS (ed) Clinical chemistry and chemical toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 213–219Google Scholar
  14. Langolf GD, Chaffin DB, Henderson R, Whittle HP (1978) Evaluation of workers exposed to elemental mercury using quantitative tests of tremor and neuromuscular functions. Am Ind Hyg Assoc J 39:976–984Google Scholar
  15. Lauwerys RR, Buchet JP (1973) Occupational exposure to mercury vapors and biological action. Arch Environ Health 27:65–68Google Scholar
  16. Lauwerys RR, Buchet JP, Roels HA, Brouwers J, Stanescu D (1974) Epidemiological survey of workers exposed to cadmium. Effect on lung, kidney and several biological indices. Arch Environ Health 28:145–148Google Scholar
  17. Lindstedt G, Gottberg I, Holmgren B, Jonsson T, Karlsson G (1979) Individual mercury exposure of chloralkali workers and its relation to blood and urinary mercury levels. Scand J Work Environ Health 5:59–69Google Scholar
  18. Magos L, Clarkson TW (1972) Atomic absorption determination of total, inorganic and organic mercury in blood. J Assoc Off Anal Chem 55:966–971Google Scholar
  19. Miller JM, Chaffin DB, Smith RG (1975) Subclinical psychomotor and neuromuscular changes in workers exposed to inorganic mercury. Am Ind Hyg Assoc J 36:725–733Google Scholar
  20. Roels HA, Buchet JP, Lauwerys R, Bruaux P, Claeys-Thoreau F, Lafontaine A, Van Overschelde J, Verduyn C (1978) Lead and cadmium absorption among children near a nonferrous metal plant. A follow-up study of a test case. Environ Res 15:290–308Google Scholar
  21. Roels HA, Lauwerys RR, Buchet JP, Bernard A (1981) Environmental exposure to cadmium and renal function of aged women in three areas of Belgium. Environ Res 24:117–130Google Scholar
  22. Schaller KH, Gonzales J, Thurauf J, Schiele R (1980) Detection of early kidney damages in workers exposed to lead, mercury and cadmium. Zentralbl Bakteriol Hyg, I Abt Orig B 171:320–335Google Scholar
  23. Schuckmann F (1979) Study of preclinical changes in workers exposed to inorganic mercury in chloralkali plants. Int Arch Occup Environ Health 44:193–200Google Scholar
  24. Schuckmann F (1981) Der Einfluß von anorganischem Quecksilber auf das Kurzzeitgedächtnis der Arbeiter in einer modernen Chloralkalielektrolysefabrik. Arbeitsmed Sozialmed Präven-tivmed 7:165–167Google Scholar
  25. Smith RG, Vorwald AJ, Patil LS, Mooney TF (1970) Effects of exposure to mercury in the manufacture of chlorine. Am Ind Hyg Assoc J 31:687–701Google Scholar
  26. Stopford W, Bundy SD, Goldwater LJ, Bittikofer JA (1978) Microenvironmental exposure to mercury vapor. Am Ind Hyg Assoc J 39:378–384Google Scholar
  27. TGMT (1976) Task Group on Metal Toxicity. In: Nordberg GF (ed) Effects and dose-response relationships of toxic metals. Elsevier, Amsterdam, pp 1–111Google Scholar
  28. Vroom FQ, Greer M (1972) Mercury vapour intoxication. Brain 95:305–318Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • H. Roels
    • 1
  • R. Lauwerys
    • 1
  • J. P. Buchet
    • 1
  • A. Bernard
    • 1
  • A. Barthels
    • 1
  • M. Oversteyns
    • 1
  • J. Gaussin
    • 2
  1. 1.Industrial and Medical Toxicology UnitUniversity of LouvainBrusselsBelgium
  2. 2.Faculté de Psychologie et des Sciences de l'EducationCentre de Psychologie du Travail et de Dynamique des GroupesLouvain la NeuveBelgium

Personalised recommendations