Antonie van Leeuwenhoek

, Volume 60, Issue 3–4, pp 373–382 | Cite as

Quantitative aspects of glucose metabolism by Escherichia coli B/r, grown in the presence of pyrroloquinoline quinone

  • R. W. J. Hommes
  • J. A. Simons
  • J. L. Snoep
  • P. W. Postma
  • D. W. Tempest
  • O. M. Neijssel

Abstract

Escherichia coli B/r was grown in chemostat cultures under various limitations with glucose as carbon source. Since E. coli only synthesized the glucose dehydrogenase (GDH) apo-enzyme and not the appropriate cofactor, pyrroloquinoline quinone (PQQ), no gluconate production could be observed. However, when cell-saturating amounts of PQQ (nmol to μmol range) were pulsed into steady state glucose-excess cultures of E. coli, the organisms responded with an instantaneous formation of gluconate and an increased oxygen consumption rate. This showed that reconstitution of GDH in situ was possible.

Hence, in order to examine the influence on glucose metabolism of an active GDH, E. coli was grown aerobically in chemostat cultures under various limitations in the presence of PQQ. It was found that the presence of PQQ indeed had a sizable effect: at pH 5.5 under phosphate- or sulphate- limited conditions more than 60% of the glucose consumed was converted to gluconate, which resulted in steady state gluconate concentrations up to 80 mmol/l. The specific rate of gluconate production (0.3–7.6 mmol·h-1·(g dry wt cells)-1) was dependent on the growth rate and the nature of the limitation. The production rate of other overflow metabolites such as acetate, pyruvate, and 2-oxoglutarate, was only slightly altered in the presence of PQQ. The fact that the cells were now able to use an active GDH apparently did not affect apo-enzyme synthesis.

Key words

glucose metabolism Escherichia coli pyrroloquinoline quinone glucose dehydrogenase 

Abbreviations

HEPES

N-2-hydroxy-ethylpiperazine-N′-2-ethane sulphonic acid

MES

2-morpholinoethane sulphonic acid

PQQ

pyrroloquinoline quinone (systematic name: 2,7,9-tricarboxy-1H-pyrrolo-(2,3-f)-quinoline-4,5-dione)

WB

Wurster's Blue (systematic name: 1,4-bis-(dimethylamino)-benzene perchlorate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameyama M, Shinagawa E, Matsushita K & Adachi O (1984) Growth stimulating substance for microorganisms produced by Escherichia coli causing the reduction of the lag phase in microbial growth and identity of the substance with pyrroloquinoline quinone. Agric. Biol. Chem. 48: 3099–3107Google Scholar
  2. Ameyama M, Nonobe M, Hayashi M, Shinagawa E, Matsushita K & Adachi O (1985) Mode of binding of pyrroloquinoline quinone to apo-glucose dehydrogenase. Agric. Biol. Chem. 49: 1227–1231Google Scholar
  3. Bergmeyer HU & Bernt E (1974) α-Ketoglutarat, UV-spektrophotometrische Bestimmung. In: Bergmeyer HU (Ed) Methoden der enzymatischen Analyse, Vol II (pp 1624–1627). Verlag Chemie, WeinheimGoogle Scholar
  4. Czok R & Lamprecht W (1974) Pyruvat, Phosphoenolpyruvat und D-Glycerat-2-phosphat. In: Bergmeyer HU (Ed) Methoden der enzymatischen Analyse, Vol. II (pp 1491–1496). Verlag Chemie, WeinheimGoogle Scholar
  5. Dawes EA (1981) Carbon metabolism. In: Calcott PH (Ed) Continuous cultures of Cells, Vol II (pp 1–38). CRC Press, Boca Raton, Florida, USAGoogle Scholar
  6. de Bont JAM, Dokter P, van Schie BJ, van Dijken JP, Frank Jzn J, Duine JA & Kuenen JG (1984) Role of quinoprotein glucose dehydrogenase in gluconic acid production by Acinetobacter calcoaceticus. A. v. Leeuwenhoek 50: 76–77Google Scholar
  7. Duine JA, Frank Jzn J & Jongejan JA (1986) PQQ and quinoprotein enzymes in microbial oxidations. FEMS Microbiol. Rev. 32: 165–178Google Scholar
  8. (1987) Enzymology of quinoproteins. Adv. Enzymol. 59: 169–212Google Scholar
  9. Evans CGT, Herbert D & Tempest DW (1970) The continuous cultivation of micro-organisms. II. Construction of a chemostat. In: Norris JR & Ribbons DW (Eds) Methods in Microbiology, Vol 2 (pp 209–344). Academic Press, London, New YorkGoogle Scholar
  10. Gornall AG, Bardawill CJ & David MA (1949) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177: 751–766Google Scholar
  11. Herbert D, Phipps PJ & Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR & Ribbons DW (Eds) Methods in Microbiology, Vol 5B (pp 209–344). Academic Press, London, New YorkGoogle Scholar
  12. Herbert D, Phipps PJ & Tempest DW (1965) The chemostat: Design and instrumentation. Lab. Pract. 14: 1150–1161Google Scholar
  13. Holz G & Bergmeyer HU (1974) Acetat, Bestimmung mit Acetatkinase und Hydroxylamin. In: Bergmeyer HU (Ed) Methoden der enzymatischen Analyse, Vol II (pp 1574–1578). Verlag Chemie, WeinheimGoogle Scholar
  14. Hommes RWJ, van Hell B, Postma PW, Neijssel OM & Tempest DW (1985) The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch. Microbiol. 143: 163–168Google Scholar
  15. Hommes RWJ, Herman PTD, Postma PW, Tempest DW & Neijssel OM (1989a) The separate roles of PQQ and apoenzyme syntheses in the regulation of glucose dehydrogenase activity in Klebsiella pneumoniae NCTC 418. Arch. Microbiol. 151: 257–260Google Scholar
  16. Hommes RWJ, Postma PW, Neijssel OM, Tempest DW, Dokter P & Duine JA (1984) Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli. FEMS Microbiol. Lett. 24: 329–333Google Scholar
  17. Hommes RWJ, Postma PW, Tempest DW & Neijssel OM (1989b) The influence of the culture pH value on the direct glucose oxidative pathway in Klebsiella pneumoniae NCTC 418. Arch. Microbiol. 151: 261–267Google Scholar
  18. Leegwater MPM (1983) Microbial reactivity: its relevance to growth in natural and artificial environments. PhD thesis, University of AmsterdamGoogle Scholar
  19. Linton JD, Woodard S & Gouldney DG (1987) The consequence of stimulating glucose dehydrogenase activity by the addition of PQQ on metabolite production by Agrobacterium radiobacter. Appl. Microbiol. Biotechnol. 25: 357–361Google Scholar
  20. Matsushita K, Nonobe M, Shinagawa E, Adachi O & Ameyama M (1987) Reconstitution of pyrroloquinoline quinone-dependent D-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. J. Bacteriol. 169: 205–209Google Scholar
  21. Matsushita K, Shinagawa E & Ameyama M (1982) D-Gluconate dehydrogenase from bacteria, 2-keto-D-gluconate-yielding, membrane-bound. Meth. Enzymol. 89: 187–193Google Scholar
  22. Michaelis L & Granick S (1943) The polymerization of the free radicals of the Wurster Dye type: the dimeric resonance bond. J. Am. Chem. Soc. 65: 1747–1755Google Scholar
  23. Möllering H & Bergmeyer HU (1974) D-Gluconat. In: Bergmeyer HU (Ed) Methoden der enzymatischen Analyse, Vol II (pp 1288–1292). Verlag Chemie, WeinheimGoogle Scholar
  24. Müller RH & Babel W (1986) Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus. Arch. Microbiol. 144: 62–66Google Scholar
  25. Neijssel OM & Tempest DW (1975a) The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch. Microbiol. 106: 251–258Google Scholar
  26. (1975b) Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes. Arch. Microbiol. 105: 183–185Google Scholar
  27. Neijssel OM, Tempest DW, Postma PW, Duine JA & Frank Jzn J (1983) Glucose metabolism by K+-limited Klebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiol. Lett. 20: 35–39Google Scholar
  28. Page MD & Anthony C (1986) Regulation of formaldehyde oxidation by the methanol dehydrogenase modifier proteins of Methylophilus methylotrophus and Pseudomonas AML. J. Gen. Microbiol. 132: 1553–1563Google Scholar
  29. Postma PW & Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232–269Google Scholar
  30. van Schie BJ, de Mooy OH, LInton JD, van Dijken JP & Kuenen JG (1987) PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium, and Rhizobium species. J. Gen. Microbiol. 133: 867–875Google Scholar
  31. van Schie BJ, Hellingwerf KJ, van Dijken JP, Elferink MGL, van Dijl JM, Kuenen JG & Konings WN (1985) Energy transduction by electron transfer via a pyrrolo-quinoline quinone dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa and Acinetobacter calcoaceticus (var. lwoffi). J. Bacteriol. 136: 493–499Google Scholar
  32. van Schie BJ, van Dijken JP & Kuenen JG (1984) Non-coordinated synthesis of glucose dehydrogenase and its prosthetic group PQQ in Acinetobacter and Pseudomonas species FEMS Microbiol. Lett. 24: 133–138Google Scholar
  33. Wood WA & Schwerdt RF (1953) Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J. Biol. Chem. 201: 501–511Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • R. W. J. Hommes
    • 1
  • J. A. Simons
    • 1
  • J. L. Snoep
    • 1
  • P. W. Postma
    • 2
  • D. W. Tempest
    • 3
  • O. M. Neijssel
    • 1
  1. 1.Department of Microbiology, Biotechnology CentreUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Biochemistry, Biotechnology CentreUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of MicrobiologyUniversity of SheffieldSheffieldEngland
  4. 4.Gist-Brocades NVDelftThe Netherlands

Personalised recommendations