Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantifying heterogeneity: flow cytometry of bacterial cultures

Abstract

Flow cytometry is a technique which permits the characterisation of individual cells in populations, in terms of distributions in their properties such as DNA content, protein content, viability, enzyme activities and so on. We review the technique, and some of its recent applications to microbiological problems. It is concluded that cellular heterogeneity, in both batch and continuous axenic cultures, is far greater than is normally assumed. This has important implications for the quantitative analysis of microbial processes.

This is a preview of subscription content, log in to check access.

References

  1. Allman R, Hann AC, Phillips AP, Martin KL & Lloyd D (1990) Growth of Azotobacter vinelandii with correlation of Coulter cell size, flow cytometric parameters, and ultrastructure. Cytometry 11: 822–831

  2. Allman R, Schjerven T & Boye E (1991) Cell-cycle parameters of E. coli K-12 strains determined using flow cytometry. J. Bacteriol. (in press)

  3. Amman RI, Binder BJ, Olsen RJ, Chisholm SW, Devereux R & Stahl DA (1990) Combination of 16S rRNA-targetted probes with flow cytometry for analysing mixed microbial populations. Appl. Env. Microbiol. 56: 1919–1925

  4. An G-H, Bielich J, Auerbach R & Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting Bio/Technology 9: 70–73

  5. Aoyama T & Ichikawa H (1991) Basic operating characteristics of neural networks when applied to structure-activity studies. Chem. Pharm. Bull. 39: 358–366

  6. Austin B & Priest F (1986) Modern Bacterial Taxonomy. Van Nostrand Reinhold, Wokingham

  7. Bertin B, Broux O & van Hoegaerden M (1990) Flow cytometric detection of yeast by in situ hybridization with a fluorescent ribosomal RNA probe. J. Microbiol. Methods 12: 1–12.

  8. Betz JW, Aretz W & Härtel W (1984) Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5: 145–150

  9. Boye E & Løbner-Olesen A (1990) Flow cytometry: illuminating microbiology. The New Biologist 2: 119–125

  10. Caplan SR & Essig A (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics. The Steady State. Cambridge/Massachusetts. Harvard University Press

  11. Caulcott CA, Dunn A, Robertson HA, Cooper NS, Brown ME & Rhodes PM (1987) Investigation of the effect of growth enviroment on the stability of low-copy-number plasmids in Escherichia coli. J. Gen. Microbiol. 133: 1881–9

  12. Causton DR (1987) A Biologist's Advanced Mathematics (pp 48–72). Allen & Unwin, London

  13. Chao L & BcBroom SM (1985) Evolution of transposable elements: an IS10 insertion increases fitness in Escherichia coli. Mol. Biol. Evol. 2: 359–369

  14. Chatfield C & Collins AJ (1980) Introduction to Multivariate Analysis (pp 57–81). Chapman & Hall, London

  15. Collins JM & Grogan WM (1991) Fluorescence quenching of a series of membrane probes measured in living cells by flow cytometry. Cytometry 12: 247–251

  16. Cooper S (1991) Bacterial Growth and Division. Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles. Academic Press, San Diego

  17. Cunningham A (1990) Fluorescence pulse shape as a morphological indicatoor in the analysis of colonial microalgae by flow cytometry. J. Microbiol. Meth. 11: 27–36

  18. Darzynkiewicz Z (1979) Acridine Organge as a molecular probe in studies of nucleic acids in situ. In: Melamed MR, Mullaney PF & Mendelsohn ML (Eds) Flow Cytometry and Sorting (pp 285–316). Wiley, New York

  19. Darzynkiewicz Z & Crissman HA (Eds) (1990) Flow Cytometry. Academic Press, New York

  20. Davey CL, Dixon NM & Kell DB (1990a) FLOWTOVP: a spreadsheet method for linearising flow cytometric light-scattering data used in cell sizing. Binary 2: 119–125

  21. Davey CL, Kell DB & Dixon NM (1990b) SKATFIT: A program for determining the mode of growth of individual microbial cells from flow cytometric data. Binary 2: 127–132

  22. Dolbeare F & Smith R (1979) Flow cytoenzymology: rapid enzyme analysis of single cells. In: Melamed MR, Mullaney PF & Mendelsohn ML (Eds) Flow Cytometry and Sorting (pp 317–333). Wiley, New York

  23. Donachie WD, Jones NC & Teather N (1973) The bacterial cell cycle. Symp. Soc. Gen. Microbiol. 23: 9–45

  24. Dunlop EH & Ye SJ (1990) Micromixing in fermentors: metabolic changes in Saccharomyces cerevisiae and their relationship to fluid turbulence. Biotechnol. Bioeng. 36: 854–864

  25. Dykhuizen DE & Hartl DL (1983) Selection in chemostats. Microbiol. Rev. 47: 150–168

  26. Flury B & Riedwyl H (1988) Multivariate Statistics: A Practical Approach (pp 181–233). Chapman & Hall, London

  27. Fowler JD & Dunlop EH (1989) Effects of reactant heterogeneity and mixing on catabolite repression in cultures of Saccharomyces cerevisiae. Biotechnol. Bioeng. 33: 1039–1046

  28. Frelat G, Laplace-Builhe C & Grunwald D (1989) Microbial analysis by flow cytometry: present and future, In: Yen A (Ed) Flow Cytometry: Advanced Research and Clinical Applications, Vol 1 (pp 64–80). CRC Press, Boca Raton

  29. Goodfellow M, Jones D & Priest FG (Eds) (1985) Computer-assisted Bacterial Systematics. Academic Press, London

  30. Gibbs JW (1902) Elementary Principles in Statistical Mechanics, New York, Scribner

  31. Glansdorff P & Prigogine I (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London

  32. Glass L & Mackey MC (1988) From Clocks to Chaos. The Rhythms of Life. Princeton University Press, Princeton

  33. Gleick J (1987) Chaos. Making a New Science. Viking Press, New York

  34. Gottschal JC (1990) Phenotypic response to environmental change. FEMS Microbiol. Ecol. 74: 93–102

  35. Harris CM & Kell DB (1985) The estimation of microbial biomass. Biosensors J. 1: 17–84

  36. Harvey JD (1983) Mathematics of microbial age and size distributions. In: Bazin MJ (Ed) Mathematics in Microbiology (pp 1–35). Academic Press, London

  37. Heinzle E, Dunn IJ, Furukawa K & Tanner RD (1982) Modelling of sustained oscillations in continuous culture of Saccharomyces cerevisiae. In: Halme A (Ed) Modelling and Control of Biotechnical Processes (pp 57–65). Pergamon Press, Oxford

  38. Höfle M (1983) Long-term changes in chemostat cultures of Cytophaga johnsonae. Appl. Env. Microbiol. 46: 1045–1053

  39. Horan NJ, Midgley M & Dawes EA (1981) Effect of starvation on transport, membrane potential and survival of Staphylococcus epidermidis under anaerobic conditions. J. Gen. Microbiol. 127: 223–230

  40. Hunter JB & Asenjo JA (1990) A population balance model of enzymatic lysis of microbial cells. Biotechnol. Bioeng. 35: 31–42

  41. Hutter K-J & Eipel HE (1978) Flow cytometric determination of cellular substances in algae, bacteria, moulds and yeasts. A. van Leeuwenhoek 44: 269–282

  42. Ingram M, Cleary TJ, Price BJ, Price RL & Castro A (1982) Rapid detection of Legionella pneumophila by flow cytometry. Cytometry 3: 134–137

  43. Jepras RI (1991) Applications of photon correlation spectroscopy and flow cytometry to microbiology. PhD thesis, Centre for Applied Microbiology and Research

  44. Jones KL & Rhodes-Roberts ME (1981) The survival of marine bacteria under starvation conditions. J. Appl. Bacteriol. 50: 247–258

  45. Kachel V, Messerschmidt R & Hummel P (1990) Eight-parameter PC-AT based flow cytometric data system. Cytometry 11: 805–812

  46. Kamp F, Welch GR & Westerhoff HV (1988) Energy coupling and Hill cycles in enzymatic processes. Cell Biophys. 12: 201–236

  47. Kaprelyants AS & Kell DB (1991) Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J. Appl. Bacteriol. (in press)

  48. Kell DB (1987) The principles and potential of electrical admittance spectroscopy: an introduction. In: Turner APF, Karube I & Wilson GS (Eds) Biosensors; Fundamentals and Applications (pp 427–468). Oxford University Press

  49. Kell DB (1988) Protonmotive energy-transducing systems: some physical principles and experimental approaches. In: Anthony CJ (Ed) Bacterial Energy Transduction (pp 429–490). London: Academic Press

  50. Kell DB, van Dam K & Westerhoff HV (1989) Control analysis of microbial growth and productivity. Symp. Soc. Gen. Microbiol. 44: 61–93

  51. Kjellberg S, Hermansson M, Marden P & Jones GW (1987) The transient phase between growth and non-growth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 41: 25–49

  52. Kohonen T (1989) Self-Organization and Associative Memory, 3rd edition. Springer, Heidelberg

  53. Koizumi J & Aiba S (1989) Oscillatory behaviour of population density in continuous culture of genetically-engineered Bacillus stearothermophilus. Biotechnol. Bioeng. 34: 750–754

  54. Krawiec S & Riley M (1990) Organization of the bacterial chromosome. Microbiol. Rev. 54: 502–539

  55. Kruth HS (1982) Flow cytometry: rapid analysis of single cells. Anal. Biochem. 125: 225–242

  56. Kubitschek HE (1974) Operation of selection pressure on microbial populations. Symp. Soc. Gen. Microbiol. 24: 105–130

  57. Levy GC, Wang S, Kumar P & Borer P (1991) Multidimensional nuclear magnetic resonance spectroscopy and modeling of complex molecular structures: a challenge to today's computer methods. Spectroscopy International 6: 22–34

  58. Lloyd D, Poole RK & Edwards SW (1982) The Cell Division Cycle. London, Academic Press

  59. Markx GH, Davey CL & Kell DB (1991a) The permittistat: a novel type of turbidostat. J. Gen. Microbiol. 137: 735–743

  60. Markx GH, Davey CL & Kell DB (1991b) To what extent is the value of the Cole-Cole αof the β-dielectric dispersion of cell suspensions accountable in terms of the cell size distribution? Bioelectrochem. Bioenerg. 25: 195–211

  61. Mason CA, Hamer G & Bryers JD (1986) The death and lysis of microorganisms in environmental processes. FEMS Microbiol. Rev. 39: 373–401

  62. Massart DL, Vandeginste BGM, Deming SN, Michotte Y & Kaufman L (1988) Chemometrics. Elsevier, Amsterdam

  63. Matin A, Auger EA, Blum PH & Schultz JE (1989) The genetic basis of starvation survival in non-differentiating bacteria. Annu. Rev. Microbiol. 43: 293–316

  64. McClelland JL & Rumelhart DE (1988) Explorations in Parallel Distributed Processing; A Handbook of Models, Programs and Exercises. MIT Press, Cambridge, Massachasetts

  65. Melamed MR, Mullaney PF & Mendelsohn ML (Eds) (1979) Flow Cytometry and Sorting, New York, John Wiley

  66. Melamed MR, Lindmo T & Mendelsohn ML (Eds) (1990) Flow Cytometry and Sorting, 2nd edition. New York, Wiley-Liss

  67. Miller JS & Quarles JM (1990) Flow cytometric identification of microorganisms by dual staining with FITC and PI. Cytometry 11: 667–675

  68. Mitchison JM (1971) The Biology of the Cell Cycle. Cambridge University Press, Cambridge

  69. Moon FC (1987) Chaotic Vibrations, Wiley, New York

  70. Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv. Micr. Ecol. 6: 171–198

  71. Morita RY (1988) Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol. 34: 346–441

  72. Mitchison JM (1971) The Biology of the Cell Cycle. Cambridge University Press, Cambridge

  73. Muirhead KA, Horan PK & Poste G (1985) Flow cytometry: present and future. Bio/Technology 3: 337–356

  74. Neidhardt FC, Ingraham JL & Schaechter M (1989) Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Sunderland, Massachusetts

  75. Olson RJ, Vaulot D & Chisholm SW (1986) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res. 32: 1273–1280

  76. Ormerod MG (Ed) (1990) Flow Cytometry: A Practical Approach. IRL Press, Oxford

  77. Otto R, Vije J, Ten Brink B, Klont B & Konings WN (1985) Energy metabolism in Streptococcus cremoris during lactose starvation. Arch. Microbiol. 141: 348–352

  78. Pao Y-H (1989) Adaptive Patern Recognition and Neural NetWorks. Addison-Wesley, Reading, Massachusetts

  79. Patchett RA, Back JP & Kroll RG (1990) Enumeration of bacteria by use of a commercial flow cytometer. J. Appl. Bacteriol. 69: (6), xxiii

  80. Pinder AC, Purdy PW, Poulter SAG & Clark DC (1990) Validation of flow cytometry for rapid enumeration of bacterial concentrations in pure cultures. J. Appl. Bacteriol. 69: 92–100

  81. Poindexter JS (1981) Oligotrophy: fast and famine existence. Adv. Microbial Ecol. 5: 63–89

  82. Poolman B, Smid EJ, Veldkamp H & Konings WN (1987) Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J. Bacteriol. 149: 1460–1468

  83. Postgate JR (1976) Death in microbes and macrobes. In: Gray TRG & Postgate JR (Eds) The Survival Of Vegetative Microbes (pp 1–19). Cambridge, Cambridge University Press

  84. Rabinovitch PS & June CH (1990a) Measurement of intracellular ionized calcium and membrane potential. In: Melamed MR, Lindmo T & Mendelsohn ML (Eds) Flow Cytometry and Sorting, 2nd edition, Ch 32 (pp 651–668). New York, Wiley-Liss

  85. Rabinovitch PS & June CH (1990b) In: Ormerod JM (Ed) Flow Cytometry: A Practical Approach (pp 161–185). IRL Press, Oxford

  86. Robertson BR & Button DK (1989) Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry 10: 70–76

  87. Robinson JP, Durack G & Kelley S (1991) An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file. Cytometry 12: 82–90

  88. Ronot X, Benel L, Adolphe M & Mounolou J-C (1986) Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biology of the Cell 57: 1–8

  89. Rose VS, Croall IF & MacFie HJH (1991) An application of unsupervised neural network methodology (Kohonen topology-preserving mapping) to QSAR analysis. Qant. Struct.-Act. Relat. 10: 6–15

  90. Roszak DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379

  91. Rutgers M. Teixeira de Mattos MJ, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae. J. Gen. Microbiol. 133: 445–453

  92. Salzman GC (1982) Light scattering analysis of single cells. In: Catsimpoolas N. (Ed) Cell Analysis, Vol 1 (pp 111–143). Plenum Press, New York

  93. Sanders CA, Yajko DM, Hyun W, Langlois RG, Nassos PS, Fulwyer M & Hadley WK (1990) Determination of guanine-plus-cytosine content of bacterial DNA by dual laser flow cytometry. J. Gen. Microbiol. 136: 359–365

  94. Scheper T, Hitzmann B, Rinas U & Schugerl K (1987) Flow cytometry for Escherichia coli for process monitoring. J. Biotechnol. 5: 139–148

  95. Seo J-H & Bailey JE (1987) Cell cycle analysis of plasmid-containing Escherichia coli HB101 populations with flow cytometry. Biotechnol. Bioeng. 30: 297–305

  96. Seo J-H, Srienc F & Bailey JE (1985) Flow cytometry analysis of plasmid amplification in Escherichia coli. Biotechnol. Progr. 1: 181–188

  97. Shapiro HM (1988) Practical Flow Cytometry, 2nd edition. Alan R. Liss, New York

  98. Shapiro HM (1990) Flow cytometry in laboratory microbiology: new directions. ASM News: 584–588

  99. Simpson PK (1990) Artificial Neural Systems: Foundations, Paradigms, Applications and Implementations Pergamon Press, New York

  100. Sinclair CG & Brown DE (1970) Effect of incomplete mixing on the analysis of the static behaviour of continuous cultures. Biotechnol. Bioeng. 12: 1001–1017

  101. Sinclair CG & Topiwala HH (1970) Model for continuous culture which considers the viablity concept. Biotechnol. Bioeng. 12: 1069–1079

  102. Skarstad K, Steen HB & Boye E (1983) Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J. Bacteriol. 154: 656–662

  103. Srienc F, Arnold B & Bailey JE (1984) Characterization of intracellular accumulation of poly-β-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol. Bioeng. 26: 982–987

  104. Srienc F, Campbell JL & Bailey JE (1986) Flow cytomeny analysis of recombinant Saccharomyces cerevisiae populations. Cytometry 7: 132–141

  105. Srour EF, Leemhuis T, Brandt JE, van Besien K & Hofmann R (1991) Simultaneous use of rhodamine 123, phycoerthyrin, texas red and allophycocyanin for the isolation of human haematopoietic progenitor cells. Cytometry 12: 179–183

  106. Steen HB (1990) Flow cytometric studies of microorganisms. In: Melamed MR, Lindmo T & Mendelsohn ML (Eds) Flow Cytometry and Sorting, 2nd edition, Ch 29 (pp 605–622). Wiley-Liss, New York

  107. Steen HB, Boye E, Skarstad K, Bloom B, Godal T & Mustafa S (1982) Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry 2: 249–257

  108. Steen HB, Lindmo T & Stokke T (1989) Differential light-scattering detection in an arc lamp-based flow cytometer, In: Yen A (Ed) Flow Cytometry: Advanced Research and Clinical Applications, Vol 1 (pp 64–80). CRC Press, Boca Raton

  109. Steen HB, Skarstad K & Boye E (1990) DNA measurements of bacteria. Meth. Cell. Biol. 33: 519–526

  110. Sychra JJ, Bartels PH, Bibbo M & Wied GL (1978) Dimensionality reducing dislays in cell image analysis. Acta Cytol. 21: 747–752

  111. Tanke HJ (1990) In: Ormerod JM (Ed) Flow Cytometry: A Practical Approach (pp 187–207)

  112. van Dilla MA, Langlois RG, Pinkel D & Hadley WK (1983) Bacterial characterization by flow cytometry. Science 220: 620–622

  113. Waggoner AS (1990) Fluorescent probes for cytometry. In: Melamed MR, Lindmo T & Mendelsohn ML (Eds) Flow Cytometry and Sorting, 2nd edition, Ch 12 (pp 209–225). Wiley-Liss, New York

  114. Weber AE & San K-U (1990) Population dynamics of a recombinant culture in a chemostat under prolonged cultivation. Biotechnol. Bioeng. 36: 727–736

  115. Welch GR & Kell DB (1986) Not just catalysts: the bioenergetics of molecular machines. In: Welch GR (Ed) The Fluctuating Enzyme (pp 451–492). Wiley, New York

  116. Westerhoff HV, Hellingwerf KJ & van Dam K (1983) Efficiency of microbial growth is low, but optimal for maximum growth rate. Proc. Natl. Acad. Sci. 80: 305–9

  117. Westerhoff HV, Tsong TS, Chock PB, Chen Y & Astumian RD (1986) How enzymes can capture and transmit free energy from an oscillating electric field. Proc. Natl. Acad. Sci. 83: 4734–4738

  118. Westerhoff HV & van Dam K (1987) Thermodynamics and Control of Biological Free Energy Transduction. Elsevier, Amsterdam

  119. Williams RJ (1956) Biochemical Individuality. Wiley, New York

  120. Wittrup KD & Bailey JE (1988) A single-cell assay of β-galactosidase activity in Saccharomyces cerevisiae. Cytometry 9: 394–404

  121. Wittrup KD, Mann MB, Fenton DM, Tsai LB & Bailey JE (1988) Single-cell light scatter as a probe of refractile body formation in recombinant Escherichia coli. Bio/Technology 6: 423–426

  122. Wolpert DM & Miall RC (1990) Detecting chaos with neural networks. Proc. R. Soc. B. 242: 82–86

  123. Zychlinski E & Matin A (1983) Effect of starvation on cytoplasmic pH, protonmotive force and viability of an acidophilic bacterium Thiobacillus acidophilus. J. Bacteriol. 153: 371–374

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kell, D.B., Ryder, H.M., Kaprelyants, A.S. et al. Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie van Leeuwenhoek 60, 145–158 (1991). https://doi.org/10.1007/BF00430362

Download citation

Key words

  • analysis
  • bacteria
  • cytofluorometry
  • flow cytometry
  • heterogeneity