Optical and Quantum Electronics

, Volume 25, Issue 12, pp S953–S964

Electroabsorption modulators operating at 1.3 μm on GaAs substrates

  • S. M. Lord
  • B. Pezeshki
  • J. S. HarrisJr


This paper describes the growth and device performance of electroabsorption modulators on GaAs substrates operating near 1.3 μm, the dispersion minimum for silica fibres. The key to the successful molecular beam epitaxial (MBE) growth of these devices was the incorporation of a linearly-graded buffer layer beneath the InGaAs/AlGaAs multi-quantum-well active layer. Both transmission and reflection modulators are produced. For transmission devices, larger modulation is achieved when the buffer is graded more slowly: The maximum modulation reported was 22% for ΔT/TOcorresponding to a 0.86 dB contrast ratio with an insertion loss of roughly 5 dB at 1.34 μm. Antireflection coating a transmission modulator yields a reasonable reflection modulator. However, improved performance is reported for a reflection modulator using a novel technique of integrating the bottom quarter-wave mirror into a buffer with linearly-graded In composition. At 1.33 μm, a normally-off reflection modulator with an integrated mirror exhibited a ΔR/ROof 73%, a constrast ratio of 2.38 dB, and an insertion loss of 4 dB.


  1. 1.
    S. M., LORD, B., PEZESHKI and J. S., HARRIS, Jr, Electron. Lett. 28 (1992) 1193.Google Scholar
  2. 2.
    S., NIKI, W. S. C., CHANG, H. H., WIEDER and T. E., van, ECK, J. Cryst. Growth 111 (1991) 419.Google Scholar
  3. 3.
    T. K., WOODWARD, T., SIZER, D. L., SIVCO and A. Y., CHO, Appl. Phys. Lett. 57 (1990) 548.Google Scholar
  4. 4.
    I. J., FRITZ, D. R., MYERS, G. A., VAWTER, T. M., BRENNAN and B. E., HAMMONS, Appl. Phys. Lett. 58 (1991) 1608.Google Scholar
  5. 5.
    K. W., GOOSSEN, J. E., CUNNINGHAM and W. Y., JAN, Electron. Lett. 28 (1992) 1833.Google Scholar
  6. 6.
    K. W., JELLEY, R. W. H., ENGELMANN, K., ALAVI and H., LEE, Appl. Phys. Lett. 55 (1989) 70.Google Scholar
  7. 7.
    J. E., CUNNINGHAM, K., GOOSSEN, M., WILLIAMS and W., JAN, J. Vacuum Sci. Technol. B 10 (1992) 949.Google Scholar
  8. 8.
    B., PEZESHKI, S. M., LORD and J. S., HARRIS, Jr, Appl. Phys. Lett. 59 (1991) 888.Google Scholar
  9. 9.
    S. M., LORD, B., PEZESHKI, A. F., MARSHALL, J. S., HARRIS, Jr, R., FERNANDEZ and A., HARWIT, Mat. Res. Soc. Symp. Proc. 281 (1993) 221.Google Scholar
  10. 10.
    J. W. P., HSU, E. A., FITZGERALD, Y. H., XIE, P. J., SILVERMAN and M. J., CARDILLO, Appl. Phys. Lett 61 (1992) 1293.Google Scholar
  11. 11.
    B., PEZESHKI, D., THOMAS and J. S., HARRIS, Jr, Appl. Phys. Lett. 57 (1990) 1491.Google Scholar
  12. 12.
    Coating performed at CVI Laser Corporation, Livermore, CA 94550.Google Scholar
  13. 13.
    B. PEZESHKI, Ph. D. Thesis, Stanford University 1991, Chapter 4.Google Scholar
  14. 14.
    D. A. B., MILLER, Int. J. High Speed Electron. 1 (1990) 19.Google Scholar
  15. 15.
    S. M., LORD, J. A., TREZZA, M. C., LARSON, B., PEZESHKI and J. S., HARRIS, Jr, Appl. Phys. Lett. 63 (1993) 806.Google Scholar
  16. 16.
    I. J., FRITZ, B. E., HAMMONS, A. J., HOWARD and T. M., BRENNAN, Appl. Phys. Lett. 62 (1993) 919.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • S. M. Lord
    • 1
  • B. Pezeshki
    • 1
  • J. S. HarrisJr
    • 1
  1. 1.Solid State Electronics LaboratoriesStanford UniversityStanfordUSA
  2. 2.IBM T. J. Watson Research CenterYorktown HeightsUSA
  3. 3.Department of Electrical EngineeringBucknell UniversityLewisburgUSA

Personalised recommendations