Archives of Microbiology

, Volume 148, Issue 1, pp 72–76 | Cite as

Orinithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum

  • U. J. Jürgens
  • J. Meißner
  • U. Fischer
  • W. A. König
  • J. Weckesser
Original Papers

Abstract

L-Ornithine is the only diamino acid of the peptidoglycan of the gliding phototrophic Chloroflexus aurantiacus. The other constituents are L- and D-alanine, D-glutamic acid, N-acetyl-glucosamine and N-acetyl-muramic acid (in part as muramic acid-6-phosphate), all in approximate equimolar ratios to L-ornithine, aside from small amounts of glycine and histidine. Furthermore unlike typical Gram-negative bacteria, protein is not bound to this peptidoglycan. Instead, the rigid layer (sodium dodecyl sulfate insoluble cell wall fraction) contained large amounts of a complex polysaccharide consisting of sugar O-methyl ethers, hexoses and pentoses. Its binding site is presumably muramic acid-6-phosphate of the peptidoglycan.

In contrast, in Chlorobium vibrioforme f. thiosulfatophilium, meso-diaminopimelic acid was found as the only diamino acid of this peptidoglycan. As with other Gramnegative bacteria, L- and D-alanine, D-glutamic acid, N-acetyl-glucosamine and N-acetyl-muramic acid (no muramic acid-6-phosphate) were observed in approximate equimolar ratios to meso-diaminopimelic acid, except a lower D-alanine content. The rigid layer of Chlorobium vibrioforme f. thiosulfatophilum contained protein, and there were no indications for a complex polysaccharide comparable to that of Chloroflexus aurantiacus.

Key words

Chlorobium Chloroflexus Cell wall Diaminopimelic acid Muramic acid-6-phosphate Ornithine Peptidoglycan-polysaccharide complex 

Abbreviations

Ala

alanine

A2pm

diaminopimelic acid

GC/MS

combined gas-liquid chromatography/mass spectrometry

GlcNAc

N-acetyl-glucosamine

Glu

glutamic acid

Gly

glycine

HF

hydrofluoric acid

Lys

lysine

MurNAc

N-acetyl-muramic acid

Orn

ornithine

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki Y, Nakatani T, Nakayama K, Ito E (1972) Occurrence of N-nonsubstituted glucosamine residues in peptidoglycan of lysozyme-resistant cell walls from Bacillus cereus. J Biol Chem 247:6312–6322Google Scholar
  2. Azuma I, Taniyama T, Yamamura Y, Yanagihara Y, Hattori Y, Yasuda S, Mifuchi I (1975) Chemical studies on the cell walls of Leptospira biflexa strain Urawa and Treponema pallidum strain Reiter. Japan J Microbiol 19:45–51Google Scholar
  3. Beyer P, Falk H, Kleinig H (1983) Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities. Arch Microbiol 134:60–63Google Scholar
  4. Braun V, Rehn K (1969) Chemical characterization, spatial distribution and function of lipoprotein of the Escherichia coli cell wall. Eur J Biochem 10:426–438Google Scholar
  5. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504Google Scholar
  6. Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225Google Scholar
  7. Drews G, Weckesser J, Mayer H (1978) Cell envelopes. In: Clayton RK, Sistrom WR (eds). The photosynthetic bacteria. Plenum Press, New York, USA, pp 61–77Google Scholar
  8. Evers D, Weckesser J, Jürgens UJ (1986) Chemical analyses on cell envelope polymers of the halophilic, phototrophic Rhodospirillum salexigens. Arch Microbiol 145:254–258Google Scholar
  9. Feick R, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700Google Scholar
  10. Fox GE, Stackebrandt E, Hesbell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463Google Scholar
  11. Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a non filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96–101Google Scholar
  12. Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6:152–156Google Scholar
  13. Hayashi K (1975) A rapid determination of sodium dedecyl sulfate with methyleneblue. Anal Biochem 67:503–506Google Scholar
  14. Hensel R, Demharter W, Kandler O, Kropenstedt RM, Stackebrandt E (1986) Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetical relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int J Syst Bacteriol 36:444–453Google Scholar
  15. Jürgens UJ, Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol 168:568–573Google Scholar
  16. Jürgens UJ, Drews G, Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol 154:471–478Google Scholar
  17. Knudson E, Jantzen E, Bryn K, Ormerod JG, Sirevag R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154Google Scholar
  18. König WA, Benecke I, Bretting H (1981) Gaschromatographische Trennung enantiomerer Kohlenhydrate an einer neuen chiralen stationären Phase. Angew Chem 93:688–690Google Scholar
  19. Lowry OH, Roberts NR, Leiner KY, Wu ML, Farr AL (1954) The quantitative histochemistry of brain. J Biol Chem 207:1–17Google Scholar
  20. Mayer H, Weckesser J (1984) ‘Unusual’ lipid A's: structures, taxonomical relevance and potential value for endotoxin research. In: Rietschel ETH (ed) Handbook of endotoxin, vol 1, Chemistry of endotoxin. Elsevier, Amsterdam, pp 221–247Google Scholar
  21. Merkel GJ, Stapleton, SS, Perry JJ (1978) Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria. J Gen Microbiol 109:141–148Google Scholar
  22. Ota T (1980) Purification and chemical analysis of peptidoglycan from Treponema pallidum strain Kazan. J Osaka Odontol Soc 43:589–602Google Scholar
  23. Pask-Hughes RA, Shaw N (1982) Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J Bacteriol 149:54–58Google Scholar
  24. Pask-Hughes RA, Williams RAD (1978) Cell envelope components of strains belonging to the genus Thermus. J Gen Microbiol 107:65–72Google Scholar
  25. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24Google Scholar
  26. Schleifer KH, Joseph R (1973) A directly cross-linked L-ornithine containing peptidoglycan in cell walls of Spirochaeta stenostrepta. FEBS Lett 36:83–86Google Scholar
  27. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomical implications. Bacteriol Rev 36:407–477Google Scholar
  28. Schleifer KH, Kandler O (1983) Primary structures of murein and pseudomurein. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin. Gruyter, Berlin New York, pp 11–17Google Scholar
  29. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Mikrobiol 119:269–277Google Scholar
  30. Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45Google Scholar
  31. Steinmetz MA, Fischer U (1982) Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch Microbiol 131:19–26Google Scholar
  32. Umemoto T, Ota T, Sagawa H, Kato K, Takada H, Tsujimoto M, Kawasaki A, Ogawa T, Harada K, Kotani S (1981) Chemical and biological properties of a peptidglycan isolated from Treponema pallidum Kazan. Infect Immun 31:767–774Google Scholar
  33. Vasstrand EN, Hofstad T, Endresen C, Jensen HB (1979) Demonstration of lanthionine as a natural constituent of the peptidoglycan of Fusobacterium nucleatum Fevl. Infect Immun 25:775–780Google Scholar
  34. Work E (1964) Amino acids of walls of Micrococcus radiodurans. Nature (Lond) 201:1107–1109Google Scholar
  35. Yanagihara Y, Kamisango K, Yasuda S, Kobayashi S, Mifuchi I, Azuma I, Yamamura Y, Johnson RC (1984) Chemical composition of cell walls and polysaccharide fractions of spirochetes. Microbiol Immunol 28:535–544Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • U. J. Jürgens
    • 1
  • J. Meißner
    • 1
  • U. Fischer
    • 2
  • W. A. König
    • 3
  • J. Weckesser
    • 1
  1. 1.Institut für Biologie II, Mikrobiologieder Albert-Ludwigs-UniversitätFreiburg i. Br.Federal Republic of Germany
  2. 2.Fachbereich BiologieAG Geomikrobiologie der Universität OldenburgOldenburgFederal Republic of Germany
  3. 3.Institut für Organische ChemieHamburg 13Federal Republic of Germany

Personalised recommendations