Archives of Microbiology

, Volume 148, Issue 1, pp 20–24 | Cite as

Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd1) among denitrifying pseudomonads

  • H. Körner
  • K. Frunzke
  • K. Döhler
  • W. G. Zumft
Original Papers


The novel multicopper enzyme nitrous oxide reductase from Pseudomonas perfectomarina was purified to homogeneity to study its properties and distribution in various pseudomonads and other selected denitrifying genera by immunochemical techniques. Quantitation of immunochemical crossreactivity by micro-complement fixation within the denitrifying pseudomonads of Palleroni's ribosomal ribonucleic acid group I corresponded to the taxonomic positions established by nucleic acid hybridization. The assignment of P. perfectomarina to the stutzeri-group (as strain ZoBell) was consolidated by immunochemical crossreactivity based on nitrous oxide reductase. Crossreactivity of nitrite reductase (cytochrome cd1) with a respective P. perfectomarina rabbit antiserum was limited to strain DSM 50227 of P. stutzeri; although it could not contribute information towards broader relationships within rRNA group I, it lent further prove to the unity of these two species.

Key words

Nitrous oxide reductase Cytochrome cd1 Denitrification Complement fixation Pseudomonas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnheim N, Wilson AC (1967) Quantitative immunological comparison of bird lysozymes. J Biol Chem 242:3951–3956Google Scholar
  2. Baumann P, Bowditch RD, Baumann L, Beaman P (1983) Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Bacteriol 33:857–865Google Scholar
  3. Carlson CA, Ingraham JL (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45:1247–1253Google Scholar
  4. Champion AB, Soderberg KL, Wilson AC, Ambler RP (1975) Immunological comparison of azurins of known amino acid sequence. J Mol Evol 5:291–305Google Scholar
  5. Champion AB, Barnett EL, Palleroni NJ, Soderberg KL, Kunisawa R, Contopoulou R, Wilson AC, Doudoroff (1980) Evolution in Pseudomonas fluorescens. J Gen Microbiol 120:485–511Google Scholar
  6. Clausen J (1981) Immunochemical techniques for the identification and estimation of macromolecules. Elsevier/North Holland, Amsterdam, p 217Google Scholar
  7. Coyle CL, Zumft WG, Kroneck PMH, Körner H, Jakob W (1985) Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina; purification and properties of a novel multicopper enzyme. Eur J Biochem 153:459–467Google Scholar
  8. De Vos P, De Ley J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509Google Scholar
  9. Döhler K, Huss VR, Zumft WG (1987) Transfer of Pseudomonas perfectomarina Baumann, Bowditch, Baumann, and Beaman 1983 to Pseudomonas stutzeri (Lehmann and Neumann 1896) Sijderus 1946). Int J Syst Bacteriol 37:1–3Google Scholar
  10. Frunzke K, Zumft WG (1984) Rapid, single sample analysis of H2, O2, N2, NO, CO, N2O and CO2 by isothermal gas chromatography: applications to the study of bacterial denitrification. J Chromatogr 299:477–483Google Scholar
  11. Görg A, Postel W, Westermeier R, Gianazza E, Righetti P (1980) Gel gradient electrophoresis, isoelectric focusing and two-dimensional techniques in horizontal, ultrathin polyacrylamide layers. J Biochem Biophys Methods 3:273–284Google Scholar
  12. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70Google Scholar
  13. Kodama T (1970) Effects of growth conditions on formation of cytochrome systems of a denitrifying bacterium, Pseudomonas stutzeri. Plant Cell Physiol 11:231–239Google Scholar
  14. Lowry OH, Rosebrough NH, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  15. Margoliash E, Nisonoff A, Reichlin M (1970) Immunological activity of cytochrome c. 1. Precipitating antibodies to monomeric vertebrate cytochromes c. J Biol Chem 245:931–939Google Scholar
  16. Matsubara T, Sano M (1985) Isolation and some properties of a novel violet copper protein from a denitrifying bacterium, Alcaligenes sp. Chem Lett 1985:1053–1056Google Scholar
  17. Matsubara T, Zumft WG (1982) Identification of a copper protein as part of the nitrous oxide-reducing system in nitrite-respiring (denitrifying) pseudomonads. Arch Microbiol 132:322–328Google Scholar
  18. Maxson RD, Maxson LR (1986) Micro-complement fixation: A quantitative estimator of protein evolution. Mol Biol Evol 3:375–388Google Scholar
  19. McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB, Ferguson SJ (1985) Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J Bacteriol 164:823–830Google Scholar
  20. Meyer TE, Cusanovich MA, Kamen MD (1986) Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc Natl Acad Sci USA 83:217–220Google Scholar
  21. Michalski WP, Nicholas DJD (1984) The adaptation of Rhodopseudomonas sphaeroides f. sp. denitrificans for growth under denitrifying conditions. J Gen Microbiol 130:155–165Google Scholar
  22. Michalski WP, Hein DH, Nicholas DJD (1986) Purification and characterization of nitrous oxide reductase from Rhodopseudomonas sphaeroides f. sp. denitrificans. Biochim Biophys Acta 872:50–60Google Scholar
  23. Palleroni NJ (1984) Genus I. Pseudomonas Migula 1894, 237AL (Nom. cons. Opin. 5, Jud. Comm. 1952, 237). In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 141–159Google Scholar
  24. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339Google Scholar
  25. Ralston-Barrett E, Palleroni NJ, Doudoroff M (1976) Phenotypic characterization and deoxyribonucleic acid homologies of the “Pseudomonas alcaligenes” group. Int J Syst Bacteriol 26:421–426Google Scholar
  26. Römermann D, Friedrich B (1985) Denitrification by Alcaligenes eutrophus is plasmid dependent. J Bacteriol 162:852–854Google Scholar
  27. Stolp H, Gadkari D (1981) Nonpathogenic members of the genus Pseudomonas. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation, and identification of bacteria. Springer, Berlin Heidelberg New York pp 719–741Google Scholar
  28. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354Google Scholar
  29. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46:573–639Google Scholar
  30. Yamanaka T, Okunuki K (1963) Crystalline Pseudomonas cytochrome oxidase. I. Enzymic properties with special reference to the biological specificity. Biochim Biophys Acta 67:379–393Google Scholar
  31. Zumft WG, Matsubara T (1982) A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarina. FEBS Lett 148:102–107Google Scholar
  32. Zumft WG, Sherr BF, Payne WJ (1979) A reappraisal of the nitric oxide-binding protein of denitrifying Pseudomonas. Biochem Biophys Res Commun 88:1230–1236Google Scholar
  33. Zumft WG, Döhler K, Körner H (1985) Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. J Bacteriol 163:918–924Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. Körner
    • 1
  • K. Frunzke
    • 1
  • K. Döhler
    • 1
  • W. G. Zumft
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität KarlsruheKarlsruhe 1Federal Republic of Germany

Personalised recommendations