Advertisement

Psychopharmacology

, Volume 60, Issue 1, pp 1–11 | Cite as

Dopaminergic supersensitivity after neuroleptics: Time-course and specificity

  • Pavel Muller
  • Philip Seeman
Original Investigations

Abstract

It is known that a single dose of a neuroleptic can elicit dopaminergic supersensitivity in animals. On the other hand, the clinical syndrome of tardive dyskinesia takes many months or years to develop. To resolve this apparent discrepancy, it is possible that subclinical or latent tardive dyskinesia is fully compensated in most patients taking neuroleptics. In others, where the tardive dyskinesia is full-blown and grossly apparent, the dopaminergic supersensitivity may be decompensated. Such compensatory and decompensatory phases have been proposed earlier by Hornykiewicz (1974), in the case of Parkinson's Disease.

Dopaminergic supersensivity persists for a period proportional to the length of the neuroleptic treatment. It is not yet clear whether the relation between the length of treatment and the persistence of supersensitivity holds for very long treatments but in principle the relationship might account for the persistence of tardive dyskinesia after years of neuroleptic pretreatment.

Key words

Tardive dyskinesia Dopamine receptors Stereotypy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahtee, L., Kaariainen, I.: The effect of narcotic analgesics on the homovanillic acid content of rat nucleus caudatus. Eur. J. Pharmacol. 22, 216–218 (1973)Google Scholar
  2. Ahtee, L.: Catalepsy and stereotypies in the rats treated with methadone: relation to striatal dopamine. Eur. J. Pharmacol. 27, 221–230 (1974)Google Scholar
  3. Anden, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970)Google Scholar
  4. Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W., Stille, G.: Tolerance phenomena with neuroleptics. Catalepsy apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur. J. Pharmacol. 22, 287–294 (1973)Google Scholar
  5. Bowers, M. B., Jr., Rozitis, A.: Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs. J. Pharm. Pharmacol. 26, 743–745 (1974)Google Scholar
  6. Burkard, W. P., Bartholini, G.: Changes in activation of adenylate cyclase and of dopamine turnover in rat striatum during prolonged haloperidol treatment. Experimentia 30, 685 (1974)Google Scholar
  7. Burt, D. R., Creese, I., Snyder, S. H.: Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196, 326–328 (1977)Google Scholar
  8. Burt, D. R., Enna, S. J., Creese, I., Snyder, S. H.: Dopamine receptor binding in the corpus striatum of mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 72, 4655–4659 (1975)Google Scholar
  9. Carlsson, A.: Receptor-mediated control of dopamine metabolism. In: Pre- and postsynaptic receptors. E. Usdin and W. E. Bunney, eds., pp. 49–63. New York: Marcel Dekker 1975Google Scholar
  10. Christensen, A. V., Fjalland, B., Møller Nielsen, I.: On the supersensitivity of dopamine receptors induced by neuroleptics. Psychopharmacology 48, 1–6 (1976)Google Scholar
  11. Clouet, D. H., Iwatsubo, K.: Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine. Life Sci. 17, 35–40 (1975)Google Scholar
  12. Costall, B., Naylor, R. J.: Neuroleptic and non-neuroleptic catalepsy. Arzneim. Forsch. 23, 674–683 (1973)Google Scholar
  13. Costall, B., Naylor, R. J.: The behavioural effects of dopamine applied intracerebrally to areas of mesolimbic system. Eur. J. Pharmacol. 32, 87–92 (1975)Google Scholar
  14. Costentin, J., Marcais, H., Protais, P., Baudry, M., Delabaume, S., Matres, M. P., Schwartz, J. C.: Rapid development of hypersensitivity of striatal dopamine receptors induced by alfamethylparatyrosine and its prevention by protein synthesis inhibitors. Life Sci. 21, 307–314 (1977)Google Scholar
  15. Cox, B., Ary, M., Lomax, P.: Changes in sensitivity to apomorphine during morphine dependence and withdrawal in rats. J. Pharmacol. Exp. Ther. 196, 637–641 (1975)Google Scholar
  16. Crane, G. E.: Persistent dyskinesia. Br. J. Psychiatry 122, 395–405 (1973)Google Scholar
  17. Creese, I., Iversen, S. D.: The role of forebrain dopamine systems in amphetamine induced stereotyped behaviour in the rat. Psychopharmacologia (Berl.) 39, 345–357 (1974)Google Scholar
  18. Dolphin, A., Sawaya, M. C. B., Jenner, P., Marsden, C. D.: Behavioural and biochemical effects of chronic reduction of cerebral noradrenaline receptor stimulation. Naunyn-Schmiedeberg's Arch. Pharmacol. 299, 163–173 (1977)Google Scholar
  19. Dustan, R., Jackson, D. M.: The demonstration of a change in adrenergic receptor sensitivity in the central nervous system of mice after withdrawal from long-term treatment with haloperidol. Psychopharmacology 38, 105–114 (1976)Google Scholar
  20. Dustan, R., Jackson, D. M.: The demonstration of a change in responsiveness of mice to physostigmine and atropine after withdrawal from long-term haloperidol pretreatment. J. Neural Transm. 40, 181–189 (1977)Google Scholar
  21. Engel, J., Liljequist, S.: The effect of long-term ethanol treatment on the sensitivity of the dopamine receptors in the nucleus accumbens. Psychopharmacology 49, 253–257 (1976)Google Scholar
  22. Ezrin-Waters, C., Muller, P., Seeman, P.: Catalepsy induced by morphine or haloperidol effects of apomorphine and anticholinergic drugs. Can. J. Physiol. Pharmacol. 54, 516–519 (1976)Google Scholar
  23. Ezrin-Waters, C., Seeman, P.: Tolerance to haloperidol catalepsy. Eur. J. Pharmacol. 41, 321–327 (1977)Google Scholar
  24. Ezrin-Waters, C., Seeman, P.: Haloperidol-induced tolerance to morphine catalepsy. Life Sci. 21, 419–422 (1977)Google Scholar
  25. Friedhoff, A. J., Bonnet, K., Rosengarten, H.: Reversal of two manifestations of dopamine receptor supersensitivity by administration of L-DOPA. Res. Commun. Chem. Pathol. Pharmacol. 16, 411–423 (1977)Google Scholar
  26. Fukui, K., Takagi, H.: Effect of morphine on cerebral contents of metabolites of dopamine in the normal and tolerant mice: its possible relation to analgesic action. Br. J. Pharmacol. 44, 45–51 (1972)Google Scholar
  27. Fuxe, K.: Tools in the treatment of Parkinson's disease: studies on new types of dopamine receptor stimulating agents. In: Progress in the treatment of Parkinsonism. Advances in neurology, Vol. 3, D. B. Calne, ed., pp. 273–279. New York: Raven 1973Google Scholar
  28. Gessa, G. L., Tagliamonte, A.: Effect of methadone and dextromoramide on dopamine metabolism: comparison with haloperidol and amphetamine. Neuropharmacology 14, 913–920 (1975)Google Scholar
  29. Gianutsos, G., Drawbaugh, R. B., Hynes, M. D., Lal, H.: Behavioural evidence for dopaminergic supersensitivity after chronic haloperidol. Life Sci. 14, 887–898 (1974)Google Scholar
  30. Gianutsos, G., Lal, H.: Alteration in the action of cholinergic and anticholinergic drugs after chronic haloperidol: indirect evidence for cholinergic hyposensitivity. Life Sci. 18, 515–520 (1976)Google Scholar
  31. Gianutsos, G., Thornburg, J. E., Moore, K. E.: Differential actions of dopamine agonists and antagonists on γ-butyrolactone-induced increase in mouse brain dopamine. Psychopharmacology 50, 225–229 (1976)Google Scholar
  32. Gianutsos, G., Moore, K. E.: Dopaminergic supersensitivity in striatum and olfactory tubercle following chronic administration of haloperidol or clozapine. Life Sci. 20, 1585–1592 (1977)Google Scholar
  33. Gnegy, M., Uzunov, P., Costa, E.: Participation of an endogenous Ca++-binding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors. J. Pharmacol. Exp. Ther. 202, 558–564 (1977)Google Scholar
  34. Griffiths, P. J., Littleton, J. M., Ortiz, A.: Changes in monoamine concentrations in mouse brain associated with ethanol dependence and withdrawal. Br. J. Pharmacol. 50, 489–494 (1974)Google Scholar
  35. György, L., Pfeifer, K. A., Hajtman, B.: Modification of certain central nervous effects of haloperidol during long-term treatment in the mouse and rat. Psychopharmacologia (Berl.) 16, 223–233 (1969)Google Scholar
  36. Heal, D. J., Green, A. R., Boullin, D. J., Graham-Smith, D. G.: Single and repeated administration of neuroleptic drugs to rats: effect on striatal dopamine-sensitive adenylate cyclase and locomotor activity produced by tranylcypromine and l-tryptophan or l-dopa. Psychopharmacology 49, 287–300 (1976)Google Scholar
  37. Hicks, J., Strong, R., Smith, R. C., Samorajski, T.: Behavioural supersensitivity to bromocriptine in mice. Society for Neuroscience abstract, III, p. 441, No. 1406 (1977)Google Scholar
  38. Hoffman, P. L., Tabakoff, B.: Alterations in dopamine receptor sensitivity by chronic ethanol treatment. Nature 268, 551–552 (1977)Google Scholar
  39. Hornykiewicz, O.: The mechanisms of action of L-DOPA in Parkinson's disease. Life Sci. 15, 1249–1259 (1974)Google Scholar
  40. Iwatsubo, K., Clouet, D. H.: Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine or haloperidol. Biochem. Pharmacol. 24, 1499–1503 (1975)Google Scholar
  41. Jackson, D. M., Andén, N.-E., Engel, J., Liljequist, S.: The effect of long-term penfluridol treatment on the sensitivity of the dopamine receptors in the nucleus accumbens and the corpus striatum. Psychopharmacologia (Berl.) 45, 151–155 (1975)Google Scholar
  42. Jackson, D. M., Andén, N.-E., Dahlström, A.: A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Psychopharmacologia (Berl.) 45, 139–149 (1975)Google Scholar
  43. Keller, H. H., Bartholini, G., Pletscher, A.: Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur. J. Pharmacol. 23, 183–186 (1973)Google Scholar
  44. Klawans, H. L., Crossett, P., Dana, N.: Effect of chronic amphetamine exposure on stereotyped behaviour: implications for pathogenesis of L-Dopa-induced dyskinesias. In: Dopaminergic mechanisms. Advances in neurology, Vol. 9, D. Calne, T. N. Chase and A. Barbeau, eds., pp. 105–112, New York: Raven 1975Google Scholar
  45. Klawans, H. L., Margolin, D. I.: Amphetamine-induced dopaminergic hypersensitivity in guinea-pigs. Arch. Gen. Psychiatry 32, 725–732 (1975)Google Scholar
  46. Klawans, H. L., Goetz, C., Nausieda, P. A., Weiner, W. J.: Levodopa-induced dopamine receptor hypersensitivity. Ann. Neurology 2, 125–129 (1977)Google Scholar
  47. Kobayashi, R. M., Fields, J. Z., Hruska, R. E., Beaumont, K., Yamamura, H. I.: Brain neurotransmitter receptors and chronic antipsychotic drug treatment: a model for tardive dyskinesia. In: Animal models in psychiatry. E. Usdin, ed. pp. 405–409. New York: Pergamon 1978Google Scholar
  48. Kuschinsky, K., Hornykiewicz, O.: Morphine catalepsy in rat: relation to striatal dopamine metabolism. Eur. J. Pharmacol. 19, 119–122 (1972)Google Scholar
  49. Kuschinsky, K.: Dopamine receptor sensitivity after repeated morphine administrations to rats. Life Sci. 17, 43–48 (1975)Google Scholar
  50. Lerner, P., Nosé, P.: Haloperidol: effect of long-term treatment on rat striatal dopamine synthesis and turnover. Science 197, 181–183 (1977)Google Scholar
  51. Leysen, J., Tollenaere, J. P., Koch, M. H. J., Laduron, P.: Differentiation of opiate and neuroleptic receptor binding in rat brain. Eur. J. Pharmacol. 43, 253–267 (1977)Google Scholar
  52. Marsden, C. D., Tarsy, D., Baldessarini, R. J.: Spontaneous and drug-induced movement disorders in psychotic patients. In: Psychiatric aspects of neurologic disease. D. F. Benson and D. Blumer, eds., pp. 219–265. New York: Grune & Stratton 1975Google Scholar
  53. Martres, M. P., Costentin, J., Baudry, M., Marcais, H., Protais, P., Schwartz, J. C.: Long-term changes in the sensitivity of pre- and postsynaptic dopamine receptors in mouse striatum evidenced by behavioural and biochemical studies. Brain Res. 136, 319–337 (1977)Google Scholar
  54. Merali, Z., Singhal, R. L., Hrdina, P. D., Ling, G. M.: Changes in brain cyclic AMP metabolism and acetylcholine and dopamine during narcotic dependence and withdrawal. Life Sci. 16, 1889–1894 (1975)Google Scholar
  55. Møller Nielsen, I., Fjalland, B., Pedersen, V., Nymark, M.: Pharmacology of neuroleptics upon repeated administration. Psychopharmacologia (Berl.) 34, 95–104 (1974)Google Scholar
  56. Muller, P., Seeman, P.: Increased specific neuroleptic binding after chronic haloperidol in rats. Soc. Neurosci. Abstr. 2, 874 (1976)Google Scholar
  57. Muller, P., Seeman, P.: Brain neurotransmitter receptors after long-term haloperidol: dopamine, acetylcholine, serotonin, α-noradrenergic and naloxone receptors. Life Sci. 21, 1751–1758 (1977)Google Scholar
  58. Pijnenburg, A. J. J., Honing, W. M. M., Van Der Heyden, J. A. M., Van Rossum, J. M.: Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur. J. Pharmacol. 35, 45–58 (1976)Google Scholar
  59. Puri, S. K., Lal, H.: Tolerance to the behavioural and neurochemical effects of haloperidol and morphine in rats chronically treated with morphine or haloperidol. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, 155–170 (1974)Google Scholar
  60. Puri, S. K., Volicer, L., Cochin, J.: Changes in the striatal adenylate cyclase activity following acute and chronic morphine treatment and during withdrawal. J. Neurochem. 27, 1551–1554 (1976)Google Scholar
  61. Quitkin, F., Rifkin, A., Gochfeld, L., Klein, D. F.: Tardive dyskinesia: are first signs reversible? Am. J. Psychiatry 134, 84–87 (1977)Google Scholar
  62. Riffee, W. H., Gerald, M. C.: The effect of chronic administration and withdrawal of (+)-amphetamine on seizure threshold and endogenous catecholamine concentrations and their rates of biosynthesis in mice. Psychopharmacology 51, 175–179 (1977)Google Scholar
  63. Rotrosen, J., Friedman, E., Gershon, S.: Striatal adenylate cyclase activity following reserpine and chronic chlorpromazine administration in rats. Life Sci. 17, 563–568 (1975)Google Scholar
  64. Sasame, H. A., Perez-Cruet, J.: Evidence that methadone blocks dopamine receptors in the brain. J. Neurochem. 19, 1953–1957 (1972)Google Scholar
  65. Sayers, A. C., Bürki, H. R., Ruch, W. Asper, H.: Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacologia (Berl.) 41, 97–104 (1975)Google Scholar
  66. Scatton, B., Glowinski, J., Julou, L.: Dopamine metabolism in the mesolimbic and mesocortical dopaminergic systems after single or repeated administrations of the neuroleptics. Brain Res. 109, 184–189 (1976)Google Scholar
  67. Seeber, U., Kuschinsky, K.: Dopamine-sensitive adenylate cyclase in homogenates of rat striata during ethanol and barbiturate withdrawal. Arch. Toxicol. (Berl.) 35, 247–253 (1976)Google Scholar
  68. Seeman, P., Chau-Wong, M., Tedesco, J., Wong, K.: Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc. Natl. Acad. Sci. U.S.A. 72, 4376–4380 (1975)Google Scholar
  69. Smith, R. C., Davis, J. M.: Behavioural evidence for supersensitivity after chronic administration of haloperidol, clozapine and thioridazine. Life Sci. 19, 725–732 (1976)Google Scholar
  70. Tang, L. C., Cotzias, G. C.: L-3,4-Dihydroxyphenylalanine-induced hypersensitivity simulating features of denervation. Proc. Natl. Acad. Sci. U.S.A. 74, 2126–2129 (1977)Google Scholar
  71. Tarsy, D., Baldessarini, R. J.: Behavioural supersensitivity to apomorphine following chronic treatment with drugs which interfere with synaptic function of catecholamines. Neuropharmacology 13, 927–940 (1974)Google Scholar
  72. Tarsy, D., Baldessarini, R. J.: The pathophysiologic basis of tardive dyskinesia. Biol. Psychiatry 12, 431–450 (1977)Google Scholar
  73. U'Prichard, D. C., Greenberg, D. A., Snyder, S. H.: Binding characteristics of radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol. Pharmacol. 13, 454–473 (1977)Google Scholar
  74. Von Stralendorff, V. B., Ackenheil, M., zimmermann, J.: Akute und chronische Wirkung von Carpipramin, Clozapin, Haloperidol und Sulpirid auf den Stoffwechsel biogener Amine im Rattengehirn. Arzneim. Forsch. 26, 1096–1098 (1976)Google Scholar
  75. Von Voigtlander, P. F., Losey, E. G., Triezenberg, H. J.: Increased sensitivity to dopaminergic agents after chronic neuroleptic treatment. J. Pharmacol. Exp. Ther. 193, 88–94 (1975)Google Scholar
  76. Walters, J. R., Roth, R. H.: Dopamine neurons: an in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 296, 5–14 (1976)Google Scholar
  77. Worms, P., Scatton, B.: Tolerance to stereotyped behaviour and to decrease in striatal homovanillic acid levels after repeated treatment with apomorphine dipivaloyl ester. Eur. J. Pharmacol. 45, 395–396 (1977)Google Scholar
  78. Yarborough, G.: Supersensitivity of caudate neurones after repeated administration of haloperidol. Eur. J. Pharmacol. 31, 367–369 (1975)Google Scholar
  79. Zarcone, V., Barchas, J., Hoddes, E., Montplaisir, J., Sack, R., Wilson, R.: Experimental ethanol ingestion: sleep variables and metabolites of dopamine and serotonin in the cerebrospinal fluid. In: Alcohol intoxication and withdrawal. Vol. 2, M. M. Gross, ed., pp. 431–451. New York: Plenum 1975Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Pavel Muller
    • 1
  • Philip Seeman
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations