Advertisement

Relationship between force and integrated EMG activity during voluntary isometric anisotonic contraction

  • S. Metral
  • G. Cassar
Article

Summary

The surface electromyogram (EMG) was recorded for the extensor carpi radiales of normal human subjects during voluntary isometric anisotonic contractions as well as the force generated by the muscle. The relationship between force and instantaneous integrated EMG could not be fitted by a single linear function or a parabola.

The muscle was then considered as a system (a) presenting a maximum force and (b) in which the EMG activity represented the input and the contraction force the output, that is F=f(iEMG) and not, as is usually done, iEMG=f(F). In addition the summed iEMG from the beginning of the contraction was used since the actual force depends on all preceding events. These findings led to testing for a non-linear and asymptotic function relating F to iEMG. A double exponential function:
$$F = a[1 - \exp {\text{ (}} - b\sum \Delta iEMG)] + d[1 - \exp {\text{ }}( - c\sum \Delta iEMG)]$$
could account for the two mechanisms by which the force of a voluntary contraction is increased.

Key words

Electromyogram Isometric contraction Muscle tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian ED, Bronk DW (1929) The discharge of impulse in motor nerve fibers, part II. J Physiol 67: 119–151Google Scholar
  2. Aubert X (1956) Le couplage energétique de la contraction musculaire. Editions Arscia, BrusselsGoogle Scholar
  3. Basmajian JV (1974) Muscles alive. 3rd edn. Williams & Wilkins Co., BaltimoreGoogle Scholar
  4. Bottomley A, Kinnier Wilson AB, Nightingale A (1963) Muscle substitutes and myoelectric control. J Br Inst Radio Eng 26: 439–448Google Scholar
  5. Bouisset S (1973) EMG and muscle force in normal motor activities. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 1. Karger, Basel, pp 547–583Google Scholar
  6. Brandstater ME, Lambert EH (1973) Motor unit anatomy. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 1. Karger, Basel, pp 14–22Google Scholar
  7. Buchthal F, Erminio F, Rosenfalk P (1959) Motor unit territory in different human muscles. Acta Physiol Scand 45: 72–87Google Scholar
  8. Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234: 723–749Google Scholar
  9. Clamann HP, Gillies JD, Skinner RD, Henneman E (1974) Quantitative measures of output of a motoneuron pool during monosynaptic reflexes. J Neurophysiol 37: 1328–1337Google Scholar
  10. Close R (1967) Properties of motor units in fast and slow skeletal muscles of the rat. J Physiol 193: 45–55Google Scholar
  11. De Luca CJ (1979) Physiology and mathematics of myoelectric signals. IEEE Trans Biomed Eng, BME-26: 313–325Google Scholar
  12. De Vries HA (1968) “Efficiency of electrical activity” as a physiological measure of the functional state of muscle tissue. Am J Phys Med 47: 10–22Google Scholar
  13. Freund HJ, Budingen HJ, Dietz V (1975) Activity of single motor units from human forerarm muscles during voluntary isometric contractions. J Neurophysiol 38: 933–946Google Scholar
  14. Gillies JD (1972) Motor unit discharge patterns during isometric contraction in man. J Physiol 223: 36P-37PGoogle Scholar
  15. Gordon AM, Huxley AF, Julien FJ (1964) The length-tension diagram of single vertebrate striated muscle fibers. J Physiol 171: 28P-30PGoogle Scholar
  16. Grillner S, Udo M (1971) Recruitment in the tonic stratch reflex. Acta Physiol Scand 81: 571–573Google Scholar
  17. Inman VT, Ralston HJ, Saunders JB de CM, Feinstein B, Wright EW Jr (1952) Relation of human electromyogram to muscular tension. EEG Clin Neurophysiol 4: 187–194Google Scholar
  18. Kernell D (1966) The repetitive discharge of motoneurones in muscular afferents and motor control. In: Granit R (ed) Nobel symposium. Almquist and Wiksell, Stockholm, pp 351–362Google Scholar
  19. Komi PV, Viitasalo JHT (1976) Signal characteristics of EMG at different levels of muscle tension. Acta Physiol Scand 96: 267–376Google Scholar
  20. Kuroda E, Klissouras V, Milsum JH (1970) Electrical and metabolic activities and fatigue in human isometric contraction. J Appl Physiol 29: 358–367Google Scholar
  21. Lind AR, Petrofsky JS (1979) Amplitude of the surface electromyogram during fatiguing isometric contractions. Muscle Nerve 2: 257–264Google Scholar
  22. Lippold OCJ (1952) The relation between integrated action potentials in a human muscle and its isometric tension. J Physiol 117: 492–499Google Scholar
  23. Mac Phedran AM, Wuerker RB, Henneman E (1965) Properties of motor units in a homogenous red muscle (soleus) of the cat. J Neurophysiol 28: 71–84Google Scholar
  24. Maton B (1973) Influence du temps d'intégration sur la relation entre l'EMG de surface intégré et la force au cours de la contraction isométrique, isotonique. Electromyogr Clin Neurophysiol 13: 307–318Google Scholar
  25. Maton B (1977) Fréquence et recrutement des unités motrices du muscle biceps brachial au cours du travail statique chez l'homme normal. J Physiol (Paris) 73: 177–199Google Scholar
  26. Maton B, Bouisset S, Métral S (1969) Vomparaison des activités électromyographiques globale et élémentaire au cours de la contraction volontaire. Electromyography 9: 311–323Google Scholar
  27. Métral S, Lemaire C, Monod H (1974) Force length integrated EMG relationships for submaximal isometric contractions. In: The control of upper extremity of prothesis and orthesis. CC Thomas, Springfield, IL, pp 13–22Google Scholar
  28. Milner-Brown HS, Stein RB (1975) The relation between the surface electromyogram and muscular force. J Physiol 246: 549–570Google Scholar
  29. Milner-Brown HS, Stein RB, Yemm R (1973a). The orderly recruitment of human motor units during voluntary isometric contraction. J Physiol 230: 359–370Google Scholar
  30. Milner-Brown HS, Stein RB, Yemm R (1973b) Changes in firing rate of human motor units during linearly changing voluntary contractions. J Physiol 230: 371–391Google Scholar
  31. Moritani T, De Vries HA (1978) Reexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contraction. Am J Phys Med 57: 263–277Google Scholar
  32. Olson CB, Carpenter DO, Henneman E (1968) Orderly recruitment of muscle action potentials. Arch Neurol 19: 591–597Google Scholar
  33. Pertuzon E (1971) Relation force-longueur isométrique du muscle humain en contraction maximale. CR Soc Biol 165: 328Google Scholar
  34. Pertuzon E (1972) La contraction musculaire dans le mouvement volontaire maximal. Thèse Doctorat d'Etat, Lille, p 210Google Scholar
  35. Petrofsky JS, Lind AR (1978) Metabolic, cardiovascular, and respiratory factors in the development of fatique in lifting tasks. Am Physiol Soc 45: 64–68Google Scholar
  36. Rack PMH, Westbury DR (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol 204: 443–460Google Scholar
  37. Scherrer J, Bourguignon A (1959) Changes in electromyogram produced by fatigue in man. Am J Phys Med 38: 170–180Google Scholar
  38. Scherrer J, Monod H (1960) Le travail musculaire local et la fatigue chez l'homme. J Physiol (Paris) 52: 419–501Google Scholar
  39. Stephens JA, Taylor A (1972) Fatigue and maintained voluntary muscle contraction in man. J Physiol 220: 1–18Google Scholar
  40. Tanji J, Kato M (1973a) Firing rate of individual motor units in voluntary contraction of abductor digiti minimi muscle in man. Exp Neurol 40: 771–784Google Scholar
  41. Tanji J, Kato M (1973b) Recruitment of motor units in voluntary contraction of a finger muscle in man. Exp Neurol 40: 750–770Google Scholar
  42. Tournay A, Paillard J (1953) Electromyographie des muscles radiaux à l'état normal. Rev Neurol 89: 277–279Google Scholar
  43. Vredenbregt J, Rau G (1973) Surface electromyography in relation to force, muscle length and endurance. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 1. Karger, Basel, pp 607–622Google Scholar
  44. Zuniga EN, Simons DG (1969) Nonlinear relationship between averaged EMG potential and muscle tension in normal subjects. Arch Phys Med Rehab 50: 613–620Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • S. Metral
    • 1
    • 2
  • G. Cassar
    • 1
    • 2
  1. 1.Laboratoire de Biophysique neuro-musculaireU.E.R Biomedicale des Saints Pères, Paris VParis, Cedex 06France
  2. 2.Laboratoire de Biophysique neuro-musculaireU.E.R. Broussais - Hotel-Dieu, Paris VIParis, Cedex 06France

Personalised recommendations