Psychopharmacology

, Volume 47, Issue 1, pp 33–41 | Cite as

Effects of tandamine and pirandamine, new potential antidepressants, on the brain uptake of norepinephrine and 5-hydroxytryptamine and related activities

  • T. Pugsley
  • W. Lippmann
Laboratory Studies

Abstract

Two novel agents, tandamine [TA; a thiopyrano (3,4-b) indole] and pirandamine [PA; an indeno (2,1-c) pyran], and the tricyclic antidepressants desimipramine (DMI), imipramine (I) and amitriptyline (A) were compared in various in vivo pharmacological tests and for norepinephrine (NE) and 5-hydroxytryptamine (5-HT) neuronal uptake inhibition. TA was found to be equivalent, or greater, in activity to DMI in blocking brain NE uptake, antagonizing reserpine-induced effects and potentiating the behavioural effects of l-Dopa. Similarly to DMI, TA did not appreciably block brain 5-HT uptake; unlike DMI, TA did potentiate central 5-HT activity at high doses. PA exerted an opposite profile to TA, being equivalent to A and greater than I as a 5-HT uptake blocker and central 5-HT potentiator; PA was not effective as a NE uptake blocker or potentiator. Neither TA or PA exhibited in vivo MAO inhibition, and in contrast to DMI, I and A, exhibited no central anticholinergic effects. TA, but not PA, potentiated apomorphine-induced gnawing. These findings indicate that TA is a relatively specific blocker of neuronal NE uptake and PA is a selective 5-HT uptake blocker.

Key words

Brain NE and 5-HT uptake inhibition Psychopharmacological effects Potential antidepressants Tandamine Pirandamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., Bloom, F. E.: Localization of tritiated serotonin in rat brain by electromicroscopic autoradiography. J. Pharmacol. exp. Ther. 156, 23–30 (1967)Google Scholar
  2. Andén, N.-E., Carlsson, A., Haggendal, J.: Adrenergic mechanisms. Ann. Rev. Pharmacol. 9, 119–134 (1969)Google Scholar
  3. Ashcroft, G. W., Eccleston, D., Murray, L. G., Glen, A. I. M., Crawford, T. B. B., Pullar, I. A., Shields, P. J., Walter, D. S.: Modified amine hypothesis for the aetiology of affective illnesses. Lancet 1972 II, 573–577Google Scholar
  4. Askew, B. M.: A simple screening procedure for imipramine-like antidepressant agents. Life Sci. 10, 725–730 (1963)Google Scholar
  5. Benesová, O., Náhunek, K.: Correlation between the experimental data from animal studies and therapeutical effects of antidepressant drugs. Psychopharmacologia (Berl.) 20, 337–347 (1971)Google Scholar
  6. Bevan, P., Bradshaw, C. M., Roberts, M. H. T., Szabadi, E.: The dual action of tricyclic antidepressant drugs on responses of single cortical neurons to acetylcholine. Brit. J. Pharmacol. 49, 173P-174P (1973)Google Scholar
  7. Blackwell, B., Lipkin, J. O., Meyer, J. H., Kuzma, R., Boulter, W. V.: Dose responses and relationships between anticholinergic activity and mood with tricyclic antidepressants. Psychopharmacoligia (Berl.) 25, 205–217 (1972)Google Scholar
  8. Bogdanski, D. F., Pletscher, A., Brodie, B. B., Udenfriend, S.: Identification and assay of serotonin. J. Pharmacol. exp. Ther. 117, 82–88 (1956)Google Scholar
  9. Bopp, B., Biel, J.: Antidepressant drugs. Life Sci. 14, 415–423 (1974)Google Scholar
  10. Bruinvels, J.: Evidence for inhibition of the re-uptake of 5-hydroxytryptamine and noradrenaline by tetrahydronaphthylamine. Brit. J. Pharmacol. 42, 281–286 (1971)Google Scholar
  11. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethylmetatyramine. Europ. J. Pharmacol. 5, 357–366 (1969a)Google Scholar
  12. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effect of some antidepressant drugs on the depletion of intraneuronal brain catecholamines by 4-α-dimethyl-metatyramine. Europ. J. Pharmacol. 5, 367–373 (1969b)Google Scholar
  13. Carlsson, A., Jonason, J., Lindqvist, M., Fuxe, K.: Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine. Brain Res. 12, 456–460 (1969c)Google Scholar
  14. Consola, S., Ladinsky, H., Garattini, S.: Effect of several dopaminergic drugs and trihexyphenidyl on cholinergic parameters in the rat striatum. J. Pharm. Pharmacol. 26, 275–277 (1974)Google Scholar
  15. Coppen, A.: Indoleamines and affective disorders. J. Psychiat. Res. 9, 163–171 (1972)Google Scholar
  16. Ernest, A. M.: The role of biogenic amines in the extra-pyramidal system. Acta physiol. pharmacol. neerl. 15, 141–154 (1969)Google Scholar
  17. Everett, G. M.: The dopa response potentiation test and its use in screening for antidepressant drugs. In: Antidepressant drugs, S. Garattini and M. N. G. Dukes, eds., pp. 164–167. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  18. Everett, G. M., Weigand, R. G.: Non-hydrazine monoamino oxidase inhibitors and their effects on central monoamines and motor behaviour. Biochem. Pharmacol. 8, 85–92 (1962)Google Scholar
  19. Everett, G. M., Weigand, R. G., Rinaldi, F. U.: Pharmacological studies of some non-hydrazine MAO inhibitors. Ann. N.Y. Acad. Sci. 107, 1068–1080 (1963)Google Scholar
  20. Fuxe, K., Ungerstedt, U.: Localization of 5-hydroxytryptamine uptake in rat brain after intraventricular injection. J. Pharm. Pharmacol. 19, 335–337 (1967)Google Scholar
  21. Garattini, S., Giachetti, A., Jori, A., Pieri, L., Valzelli, L.: Effect of imipramine, amitriptyline and their monomethyl derivatives on reserpine activity. J. Pharm. Pharmacol. 14, 509–514 (1962)Google Scholar
  22. Glowinski, J., Axelrod, J.: Effect of drugs on disposition of 3H-norepinephrine in the rat brain. Pharmacol. Rev. 18, 775–786 (1966)Google Scholar
  23. Glowinski, J., Iversen, L. L.: Regional studies of catecholamines in rat brain. I. J. Neurochem. 13, 655–669 (1966)Google Scholar
  24. Halliwell, G., Quinton, R. M., Williams, F. E.: A comparison of imipramine, chlorpromazine and related drugs in various test involving autonomic functions and antagonism of reserpine. Brit. J. Pharmacol. 23, 330–350 (1964)Google Scholar
  25. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., Sekerke, H. J.: Antagonistic effects of physostigmine and methylphenidate in man. Amer. J. Psychiat. 130, 1370–1376 (1973)Google Scholar
  26. Jori, A., Bernardi, D.: Importance of catecholamines for the interaction between reserpine and desimipramine on body temperature in rat. Pharmacology 4, 235–241 (1970)Google Scholar
  27. Kopin, I. J., Axelrod, J., Gordon, E.: The metabolic fate of 3H-epinephrine and 14C-metanephrine in the rat. J. biol. Chem. 236, 2109–2113 (1961)Google Scholar
  28. Kopin, I. J., Hertting, G., Gordon, E. K.: Fate of norepinephrine-3H in the isolated perfused heart. J. Pharmacol. exp. Ther. 141, 321–325 (1962)Google Scholar
  29. Lapin, I. P., Oxenkrug, G. F.: Intensification of the central serotonergic processes, possible determinant of the thymoleptic effect. Lancet 1969 I, 132–136Google Scholar
  30. Laverty, R., Taylor, K. M.: The fluorometric assay of catecholamine and related compounds. Analyt. Biochem. 22, 269–279 (1968)Google Scholar
  31. Lidbrink, P., Jonsson, G., Fuxe, K.: The effect of imipramine-like drugs and antihistamine drugs on uptake mechanisms in the central noradrenaline and 5-hydroxytryptamine neurons. Neuropharmacology 10, 521–536 (1971)Google Scholar
  32. Lippmann, W., Pugsley, T. A.: The effects of tandamine, a new potential antidepressant agent, on biogenic amine uptake mechanisms and related activities. Biochem. Pharmacol. (in press 1976)Google Scholar
  33. Maickel, R. P., Cox, R. H., Saillant, J., Miller, F. P.: A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int. J. Neuropharmacol. 7, 275–287 (1968)Google Scholar
  34. Meek, J., Fuxe, K., Andén, N. E.: Effects of antidepressant drugs of the imipramine type on central 5-hydroxytryptamine neurotransmission. Europ. J. Pharmacol. 9, 325–332 (1970)Google Scholar
  35. Noble, E. P., Wurtman, R., Axelrod, J.: A simple and rapid method for injecting 3H-norepinephrine into lateral ventricle of the rat brain. Life Sci. 6, 281–291 (1967)Google Scholar
  36. Pedersen, V.: Potentiation of apomorphine effect (compulsive gnawing behaviour) in mice. Acta pharmacol. (Kbh.) 25, Suppl. 4, p. 63 (1967)Google Scholar
  37. Pederson, V.: Role of catecholamines in compulsive gnawing behaviour in mice. Brit. J. Pharmacol. 34, 219P-220P (1968)Google Scholar
  38. Pletscher, A.: Monoamine oxidase inhibitors. Pharmacol. Rev. 18, 121–129 (1966)Google Scholar
  39. Plotnikoff, N., Will, F., Evans, A., Meekma, P.: PS-2747: A new antidepressant drug. Arch. int. Pharmacodyn. 195, 330–342 (1972)Google Scholar
  40. Pugsley, T. A., Lippmann, W.: Effect of butriptyline on the brain uptake mechanisms for noradrenaline and 5-hydroxytryptamine. J. Pharm. Pharmacol. 26, 778–782 (1974)Google Scholar
  41. Ross, S. B., Renyi, A. L., Ögren, S. O.: A comparison of the inhibitory activities of iprindole and imipramine on the uptake of 5-hydroxytryptamine and noradrenaline in brain slices. Life Sci. 10, 1267–1277 (1971)Google Scholar
  42. Ross, S. B., Renyi, A. L., Ögren, S. O.: Inhibition of the uptake of noradrenaline and 5-hydroxytryptamine by chlorphentermine and chlorimipramine. Europ. J. Pharmacol. 17, 107–112 (1972)Google Scholar
  43. Schildraut, J. J., Schanberg, S. M., Breese, G. R., Kopin, I. J.: Norepinephrine metabolism and drugs used in the affective disorders: a possible mechanism of action. Amer. J. Psychiat. 124, 600–608 (1967)Google Scholar
  44. Spencer, P. S. J.: The antagonism of oxotremorine effects in mouse by thymoleptics. Life Sci. 5, 1015–1023 (1965)Google Scholar
  45. Spencer, P. S. J.: Activities of centrally-acting and other drugs against tremor and hypothermia induced in mice by tremorine. Brit. J. Pharmacol. 25, 442–455 (1966)Google Scholar
  46. Sulser, F., Bickel, M. H., Brodie, B. B.: The action of desmethylimipramine in counteracting sedation and cholinergic effects of reserpine-like drugs. J. Pharmacol. exp. Ther. 144, 321–330 (1964)Google Scholar
  47. Ther, L., Schram, H.: Apomorphin-Synergismus (Zwangsnagen bei Mäusen) als Test zur Differenzierung psychotroper Substanzen Arch. int. Pharmacodyn. 138, 302–310 (1962)Google Scholar
  48. Van Praag, H. M.: Therapy-resistant depressions. Biochemical and pharmacological considerations. Pharmakopsychiat. Neuro-Psychopharmak. 7, 88–97 (1974)Google Scholar
  49. Vogt, M.: Functional aspects of the role of the catecholamines in the central nervous system. Brit. med. Bull. 29, 168–171 (1973)Google Scholar
  50. Von Euler, U. S., Floding, I.: Fluorometric determination of noradrenaline and adrenaline in urine. Acta physiol. scand. 33, Suppl. 118, 45–47 (1955)Google Scholar
  51. Whitby, L. G., Axelrod, J., Weil-Malherbe, H.: The fate of 3H-norepinephrine in animals. J. Pharmacol. exp. Ther. 132, 193–201 (1961)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • T. Pugsley
    • 1
  • W. Lippmann
    • 1
  1. 1.Biochemical Pharmacology DepartmentAyerst LaboratoriesSaint LaurentCanada

Personalised recommendations