Marine Biology

, Volume 102, Issue 3, pp 425–429 | Cite as

Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge

  • H. Fricke
  • O. Giere
  • K. Stetter
  • G. A. Alfredsson
  • J. K. Kristjansson
  • P. Stoffers
  • J. Svavarsson
Article

Abstract

A new type of animal community has been found near hot vents in the subpolar Atlantic at 100 to 106 m depth off Kolbeinsey on the Jan-Mayen ridge. Incubation of high temperature fluids yielded cultures of undescribed hyperthermophilic eu- and archaebacteria, growing in a temperature range between 70° and 110°C depending on the isolates. Bacteria are closely related to species occurring within deep sea hydrothermal areas. In contrast to deep-sea vent sites of the Mid-Atlantic and other oceans, the Kolbeinsey macro- and meiofauna consists of species reported from non-vent areas in the boreal Atlantic and adjacent polar seas. The most abundant forms are a solitary hydroid polyp and two sponges. Kolbeinsey is an isolated and young area of hydrothermal activity at relatively low depth and in highly productive waters; these findings could indicate a model for an early evolutionary step towards the formation of a genuine specialized vent community.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Banks, D. A. (1985). A fossil hydrothermal worm assemblage from the Tynagh lead-zinc deposit in Ireland. Nature, Lond. 313: 128–131Google Scholar
  2. Grassle, J. E. (1985). Hydrothermal vent animals: distribution and biology. Science. N.Y. 229: 713–717Google Scholar
  3. Grassle, J. F. (1986). The ecology of deep-sea hydrothermal vent communities. Adv. mar. Biol. 23: 301–362Google Scholar
  4. Haymon, R. M., Koski, R. A., Sinclair, C. (1984). Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samial Ophiolite, Oman. Science, N.Y. 223: 1407–1409Google Scholar
  5. Hecker, B. (1985). Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an Overview. Bull. biol. Soc. Wash. 6: 465–473Google Scholar
  6. Hessler, R., Lonsdale, P., Hawkins, J. (1988). Patterns on the ocean floor. New Scient. 24 March: 47–51Google Scholar
  7. Jensen, P. (1987). Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologica 71: 564–567Google Scholar
  8. Jones, M. L. (ed.) (1985). Hydrothermal vents of the Eastern Pacific: an Overview. Bull. biol. Soc. Wash. 6Google Scholar
  9. Kennicutt, M. C., II, Brooks, J. M., Bidggare, R. R., Fay, R. R., Wade, T. L., McDonald, T. J. (1985). Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, Lond. 317: 353Google Scholar
  10. Lutz, R. A., Jablonski, D., Turner, R. D. (1984). Larval development and dispersal at deep-sea hydrothermal vents. Science, N.Y. 226: 1451–1454Google Scholar
  11. Ocean Drilling Program (1986). Leg 106 Scientific Party: Mid-Atlantic bare rock drilling and hydrothermal vents. Nature, Lond. 321: 14–15Google Scholar
  12. Paull, C. K., Jull, A. J. T., Toolin, L. J., Linick, T. (1985). Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature, Lond. 317: 709Google Scholar
  13. Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H., Elderfield, H. (1986). Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, Lond. 321: 33–37Google Scholar
  14. Saemundsson, K., Sigurdarson, S. (1987). Koleinsey. Aegir 80: 2–12Google Scholar
  15. Southward, E. C. (1985). Vent communities in Atlantic too. Nature, Lond. 317: 673Google Scholar
  16. Stein, J. L. (1984). Subtidal gastropods consume sulfur-oxidizing bacteria: Evidence from coastal hydrothermal vents. Science, N.Y. 223: 696–698Google Scholar
  17. Suess, E., Carson, B., Ritger, S. D., Moore, J. C., Jones, M. L., Kulm, L. D., Cochrane, G. R. (1985). Biological communities at vent sites along the subduction zone off Oregon. In: Jones, M. L: (ed.) The hydrothermal vents of the Eastern Pacific: an overview. Bull. biol. Soc. Wash. 6: 475–484Google Scholar
  18. Tunnicliffe, V. (1988). Biogeography and evolution of hydrothermal vent fauna in the eastern Pacific Ocean. Proc. R. Soc. Lond. (Ser. B) 233: 347–366Google Scholar
  19. Tunnicliffe, V., Juniper, S. K., de Burgh, M. E. (1985). The hydrothermal vent community on Axial Seamount, Juan de Fuca Ridge. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an Overview. Bull. biol. Soc. Wash. 6: 453–464Google Scholar
  20. Van Dover, C. L., Fry, B., Grassle, J. F., Humphris, S., Rona, P. A. (1988). Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar. Biol. 98: 209–216Google Scholar
  21. Wiessner, W. (1981). The family Beggiatoaceae. In: Starr, M. P., Stolp, H., Trüper, H. G., Balows, A., Schlegel, H. G. (eds.) The Prokaryotes. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. Fricke
    • 1
  • O. Giere
    • 2
  • K. Stetter
    • 3
  • G. A. Alfredsson
    • 4
  • J. K. Kristjansson
    • 4
    • 5
  • P. Stoffers
    • 6
  • J. Svavarsson
    • 4
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesen/Post StarnbergFRG
  2. 2.Zoologisches Institut und Zoologishces MuseumUniversität HamburgFRG
  3. 3.Institut für Biochemie, Genetik und MikrobiologieUniversität RegensburgFRG
  4. 4.Institute of BiologyUniversity of IcelandReykjavikIceland
  5. 5.Department of BiotechnologyTechnological Institute of IcelandReykjavikIceland
  6. 6.Geologisch-Paläontologisches InstitutUniversität KielFRG

Personalised recommendations