Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Régulation et signification physiologique de l'aspartate-ammonium lyase (aspartase) de Pseudomonas fluorescens type R

Regulation and physiological significance of aspartate-ammonium lyase (Aspartase) of Pseudomonas fluorescens type R

Abstract

The biosynthesis of aspartate-ammonium lyase, the enzyme which is induced by aspartic acid, is specifically repressed by fumaric acid.

In the presence of aspartate, the enzyme permits the deamination of this compound by the cell. Aspartic acid is converted into fumaric acid which is an intermediate in the Krebs'cycle.

The reaction may be considered as an anaplerotic sequence. In the absence of aspartic acid in the culture medium, its role is anabolic; the enzyme catalyses the biosynthesis of this amino acid.

Therefore it appears that the reversible reaction fumarate+NH3=aspartate catalysed by aspartase is included in amphibolic processes.

Résumé

La biosynthèse de l'aspartate-ammonium lyase, enzyme inductible par l'acide aspartique, est réprimée spécifiquement par l'acide fumarique.

En présence d'aspartate, le rôle de l'enzyme est de permettre à la cellule de désaminer ce composé en le transformant en acide fumarique qui rejoint le cycle de Krebs. Cette réaction peut être considérée comme une séquence anaplérotique.

En absence d'acide aspartique, dans le milieu de culture, son rôle est anabolique, il catalyse la biosynthèse de cet amino acide.

Il apparaît ainsi que la réaction réversible; catalysée par l'aspartase: Fumarate+ammoniaque ⇌ aspartate doit être rangée parmi les processus amphiboliques.

This is a preview of subscription content, log in to check access.

Bibliographie

  1. Davis, B.D.: The teleonomic significance of biosynthetic control mechanisms. Cold Spr. Harb. Symp. quant. Biol. 26, 1–10 (1961)

  2. Dougherty, T.B., Williams, V.R.: Mecanism of action of Aspertase; a kinetic study and isotope rate effects with 2H. Biochemistry 11, 2493–2498 (1972)

  3. Halpern, Y.S., Umbarger, H.E.: Conversion of ammonia to amino groups in E. coli. J. Bact. 80, 285–288 (1960)

  4. Hubert, J.-Cl., Wurtz, B.: Variations de l'activité de l'aspartate-ammonium lyase de Pseudomonas fluorescens en fonction de la composition du milieu de culture. C. R. Acad. Sci. (Paris) 278, série D, 2991–2993 (1974a)

  5. Hubert, J.-Cl., Wurtz, B.: Mise en évidence de l'inductibilité de l'aspartase de Pseudomonas fluorescens. C. R. Acad. Sci. (Paris), séance du 15 juillet 1974 (sous presse, 1974b)

  6. Ichihara, K., Kanagawa, H., Uchida, M.: Studies on aspartase. J. Biochem. 42, 439–446 (1955)

  7. Kornberg, H.L.: Anaplerotic sequences and their role in metabolism. In: Essays in biochemistry, Vol. 2, P.N. Campbell, G.D. Greville, eds., pp. 1–31. New York: Academic Press 1966

  8. Liess, K., Mecke, D., Holzer, H.: Zur Regulation der Synthese von Aspartase in E. coli. Biochem. Z. 346, 244–251 (1966)

  9. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

  10. Meyer, E., Wurtz, B.: Influence des conditions de culture sur l'activité catalasique de mutants R et S d'une souche de Pseudomonas fluorescens. C. R. Soc. Biol. (Paris) 158, 821–824 (1964)

  11. Pfleiderer, G., Gruber, W., Wieland, Th.: Eine enzymatische Bestimmung der l-Asparaginsäure. Biochem. Z. 326, 446–450 (1955)

  12. Pietropaolo, C., Zappia, V., Cutinelli, L., Venuta, S., Salvatore, F.: Studi su un attivita aspartasica nei mitocondri di Fegato di Scyllium canicula. Biochem. appl. (Parma) 15, 418–428, 429–437 (1968)

  13. Ramirez, R., Ariza, A., Martin, M., Sabater, B.: Aspartasa y Glutaminasa en semillas de maiz. An. Inst. Bot. A. J. Cavanilles 30, 267–271 (1973)

  14. Rudolph, F.B., Fromm, H.J.: The purification and properties of aspartase from E. coli. Arch. Biochem. Biophys. 147, 92–98 (1971)

  15. Salvatore, F., Zappia, V., Costa, C.: Comparative biochemistry of deamination of l-amino-acids in Elasmobranch and Teleost Fish. Comp. Biochem. Physiol. 16, 303–309 (1965)

  16. Umbarger, E., Davis, B.D.: Pathways of amino-acid biosynthesis. In: The bacteria, vol. 3, I.C. Gunsalus, R.Y. Stanier, eds., pp. 167–251. New York: Academic Press 1962

  17. Vender, J., Jayaraman, K., Rickenberg, H.V.: Metabolism of glutamic acid in a mutant of E. coli. J. Bact. 90, 1304–1307 (1965)

  18. Vender, J., Rickenberg, H.V.: Ammonia metabolism in a mutant of E. coli lacking glutamic dehydrogenase. Biochim. biophys. Acta (Amst.) 90, 218–220 (1964)

  19. Williams, V.R., Lartigue, D.J.: Quarternary structure and certain allosteric properties of aspartase. J. biol. Chem. 242, 2973–2978 (1967)

  20. Williams, V.R., Lartigue, D.J.: Aspartase. In: Methods in enzymology, vol. 13, J.M. Lowenstein, ed., pp. 354–361. New York: Academic Press 1969

  21. Wurtz, B., Hubert, J.-Cl.: Recherches sur l'aspartase de Pseudomonas fluorescens. IV. Mise en évidence d'un processus complexe dans la production d'ammoniaque et de fumarate à partir d'aspartate. C. R. Soc. Biol. (Paris), 161, 1400–1403 (1967)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jean-Claude, H., Wurtz, B. Régulation et signification physiologique de l'aspartate-ammonium lyase (aspartase) de Pseudomonas fluorescens type R. Arch. Microbiol. 102, 35–39 (1975). https://doi.org/10.1007/BF00428342

Download citation

Key words

  • Aspartase
  • Pseudomonas fluorescens
  • Regulation
  • Significance