Marine Biology

, Volume 102, Issue 2, pp 243–255

Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity

  • M. P. Lesser
  • J. M. Shick
Article

Abstract

Cnidarians which contain symbiotic algae are constantly faced with the challenges of a changing photic regime and a hyperoxic environment. Zooxanthellae (Symbiodinium sp.) from the sea anemone Aiptasia pallida (Verrill), collected and cultured at Bermuda Biological Station in 1986, exhibit a suite of compensatory responses to changes in irradiance, ultraviolet radiation (UV), and to the toxicity resulting from their interaction with photosynthetically produced oxygen. Superoxide dismutase (SOD) and catalase inactivate superoxide radicals (O2-) and hydrogen peroxide (H2O2), which are mediators of oxygen toxicity, show an increase in specific activity with irradiance and in response to UV, both in cultured zooxanthellae (CZ) and freshly isolated zooxanthellae (FIZ) from acclimated anemones. CZ and FIZ exposed to environmentally realistic UV levels show a 30 to 40% increase in SOD activities compared with zooxanthellae exposed to similar irradiances without UV. CZ consistently show higher activities of both SOD and catalase compared to FIZ. Both CZ and FIZ exhibit changes in chlorophyll content and in the relationship between photosynthesis and irradiance which suggest photoadaptive changes in CO2-fixing enzymes, the photosynthetic-electron transport system, or in photosynthetic unit size (PSU). UV has a greater effect on the photosynthetic capacity (Pmax) of FIZ when compared to CZ acclimated at an equivalent irradiance with or without a UV component. UV also enhances the photoinhibition observed at high irradiance in both CZ and FIZ. Differences in enzyme activity between CZ and FIZ suggest an important role for the host in the protection of zooxanthellae against the direct effects of environmentally realistic UV while the photosynthetic performance of zooxanthellae in situ may not be as well protected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ahles, M. D. (1967). Some aspects of the morphology and physiology of Symbiodinium microadriaticum. Ph. D. thesis, Fordham University, New YorkGoogle Scholar
  2. Allen, J. F. (1977). Superoxide and photosynthetic reduction of oxygen. In: Michelson, A. M., McCord, J. M., Fridovich, I. (eds.). Superoxide and superoxide dismutases. Academic Press, New York, p. 417–436Google Scholar
  3. Asada, K., Kanematsu, S., Okada, S., Hayakawa, T. (1980). Phylogenetic distribution of three types of superoxide dismutase in organisms and in cell organelles. In: Bannister, J. V., Hill, H. A. O. (eds.). Chemical and biochemical aspects of superoxide and superoxide dismutase. Elsevier, Amsterdam, p. 136–153Google Scholar
  4. Asada, K., Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 228–287Google Scholar
  5. Bannister, J. V., Bannister, W. H., Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. In: CRC Critical Reviews in Biochemistry. Boca Raton, FL., Vol. 22, Issue 2, p. 111–180Google Scholar
  6. Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Analyt. Biochem. 44: 276–285Google Scholar
  7. Beers, R. F., Jr., Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. biol. Chem. 195: 133–140Google Scholar
  8. Berland, B. R., Maestrini, S. Y. (1969). Study of bacteria associated with marine algae in culture. II. Action of antibiotic substances. Mar. Biol. 3: 334–335Google Scholar
  9. Berner, T., Achituv, Y., Dubinsky, Z., Benayahu, Y. (1987). Pattern of distribution and adaptation to different irradiance levels of zooxanthellae in the soft coral Litophyton arboreum (Octocorallia, Alcyonacea). Symbiosis 3: 23–40Google Scholar
  10. Burns, B. D., Beardall, J. (1987). Utilization of inorganic carbon by marine microalgae. J. exp. mar. Biol. Ecol. 107: 75–86Google Scholar
  11. Calkins, J., Thordardottir, T. (1980). The ecological significance of solar UV radiation on aquatic organisms. Nature, Lond. 283: 563–566Google Scholar
  12. Cavanaugh, G. M. (1975). Formulae and methods VI of the Marine Biological Laboratory Chemical Room, Marine Biological Laboratory, Woods Hole, MAGoogle Scholar
  13. Chang, S. S., Prézelin, B. B., Trench, R. K. (1983). Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar. Biol. 76: 219–229Google Scholar
  14. Claustre, H., Gostan, J. (1987). Adaptation of biochemical composition and cell size to irradiance in two microalgae: possible ecological implications. Mar. Ecol. Prog. Ser. 40: 167–174Google Scholar
  15. Clayton, R. K. (1977). Light and living matter, Vol. 2. The biological part. Robert E. Krieger Publ. Co., Huntington, New YorkGoogle Scholar
  16. Coles, S. L., Jokiel, P. L. (1978). Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar. Biol. 49: 187–195Google Scholar
  17. Cook, C. B. (1983). Metabolic interchange in algae-invertebrate symbiosis. Int. Rev. Cytol. Suppl. 14: 177–209Google Scholar
  18. Crossland, C. J., Barnes, D. J. (1977). Gas exchange studies with the staghorn coral Acropora acuminata and its zooxanthellae. Mar. Biol. 40: 185–194Google Scholar
  19. Davis, B. J. (1964). Disc electrophoresis — II method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121: 404–427Google Scholar
  20. D'Aoust, B. G., White, R., Wells, J. M., Olsen, D. A. (1976). Coralalgal associations: capacity for producing and sustaining elevated oxygen tensions in situ. Undersea Biomed. Res. 3: 35–40Google Scholar
  21. Dunlap, W. C., Chalker, B. E., Oliver, J. K. (1986). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J. exp. mar. Biol. Ecol. 104: 239–248Google Scholar
  22. Dustan, P. (1982). Depth-dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar. Biol. 68: 253–264Google Scholar
  23. Dykens, J. A. (1984). Enzymic defenses against oxygen toxicity in marine cnidarians containing endosymbiotic algae. Mar. Biol. Lett. 5: 291–301Google Scholar
  24. Dykens, J. A., Shick, J. M. (1982). Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal host. Nature, Lond. 297: 579–580Google Scholar
  25. Dykens, J. A., Shick, J. M. (1984). Photobiology of the symbiotic sea anemone, Anthopleura elegantissima: defenses against photodynamic effects, and seasonal photoacclimatization. Biol. Bull. mar. biol Lab., Woods Hole 167: 683–697Google Scholar
  26. Elstner, E. F. (1982). Oxygen activation and oxygen toxicity. A. Rev. Pl. Physiol. 33: 73–96Google Scholar
  27. Elstner, E. F., Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for super-oxide dismutase. Analyt. Biochem. 70: 616–620Google Scholar
  28. Falkowski, P. G., Dubinsky, Z., Santostefano, G. (1985). Light-enhanced dark respiration in phytoplankton. Verh. Internat. Verein. Limnol. 22: 2830–2833Google Scholar
  29. Foote, C. S. (1976). Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Pryor, W. A. (ed.). Free radicals in biology. Academic Press, New York, Vol. II, p. 85–133Google Scholar
  30. Freeman, B. A., Crapo, J. D. (1982). Biology of disease: free radicals and tissue injury. Lab. Invest. 47: 412–426Google Scholar
  31. Fridovich, I. (1978) The biology of oxygen radicals. Science, N.Y. 201: 875–880Google Scholar
  32. Fridovich, I. (1981). Superoxide radical and superoxide dismutases. In: Schaefer, K. E., Gilbert, D. L. (eds.) Oxygen and living processes. Springer-Verlag, New York, p. 250–272Google Scholar
  33. Fridovich, I. (1986). Biological effects of the superoxide radical. Archs Biochem. Biophys. 247: 1–11Google Scholar
  34. Gallagher, J. C., Alberte, R. S. (1985). Photosynthetic and cellular photoadaptive characteristics of three ecotypes of the marine diatom, Skeletonema costatum (Grev.) Cleve. J. exp. mar. Biol. Ecol. 94: 233–250Google Scholar
  35. Gallagher J. C., Wood, A. M., Alberte, A. M. (1984). Ecotypic differentiation in the marine diatom Skletonema costatum: influence of light intensity on the photosynthetic apparatus. Mar. Biol. 82: 121–134Google Scholar
  36. Glynn, P. W., Peters, E. S., Muscatine, L. (1985). Coral tissue microstructure and necrosis: relation to catastrophic coral mortality in Panamá. Dis. aquat. Organisms 1: 29–37Google Scholar
  37. Goreau, T. F. (1964). Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora. Science, N.Y. 145: 383–386Google Scholar
  38. Groden, D., Beck, E. (1979). H2O2 destruction by ascorbate-dependent systems from chloroplasts. Biochim. Biophys. Acta. 546: 426–435Google Scholar
  39. Guillard, R. R. L. (1973). Division rates. In: Stein, J. R. (ed.). Handbook of phycological methods-culture methods and growth measurements. Cambridge University Press, Boston, p. 290–311Google Scholar
  40. Halldal, P. (1968). Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol. Bull. mar. biol. Lab., Woods Hole 134: 411–424Google Scholar
  41. Halliwell, B. (1982). The toxic effects of oxygen on plant tissues. In: L. W. Oberley (ed.). Superoxide dismutase. CRC Press, Boca Raton, Vol. I., p. 89–123Google Scholar
  42. Hill, H. A. O. (1981). Oxygen, oxidases, and the essential trace metals. Phil. Trans. R. Soc. Lond. (Ser B) 194: 119–128Google Scholar
  43. Imlay, J. A., Chin, S. M., Linn, S. (1988). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, N.Y. 240: 640–642Google Scholar
  44. Itzhaki, R. F., Gill, D. M., (1964). A micro-biuret method for estimating proteins. Analyt. Biochem. 9: 401–410Google Scholar
  45. Jaap, W. C. (1979). Observations on zooxanthellae expulsion at Middle Sambo Reef, Florida Keys. Bull. mar. Sci. 29: 414–422Google Scholar
  46. Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determing chlorophylls a, b, c, and c 2 in higher plants, algae and natural phytoplankton. Biochem. Biophys. Pfl. 167: 191–194Google Scholar
  47. Jokiel, P. L. (1980). Solar ultraviolet radiation and coral reef epifauna. Science, N.Y. 207: 1069–1071Google Scholar
  48. Jokiel, P. L., York, R. H. Jr. (1982). Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. mar. Sci. 32: 301–315Google Scholar
  49. Jokiel, P. L., York, R. H. Jr. (1984). Importance of ultraviolet radiation in photoinhibition of microalgal growth. Limnol. Oceanogr. 29: 192–199Google Scholar
  50. Krause, G. H., Cornic, G. (1987). CO2 and O2 interactions in photoinhibition. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 169–196Google Scholar
  51. Kyle, D. J. (1987). The biochemical basis for photoinhibition of photosystem II. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 197–226Google Scholar
  52. Kyle, D. J., Ohad, I. (1986). The mechanism of photoinhibition in higher plants and green algae. In: Staehlin, L. A., Arntzen, C. J. (eds.). Encyclopedia of plant physiology, Vol. 19. Photosynthesis III, photosynthetic membranes and light harvesting systems. Springer-Verlag, Berlin, p. 468–475Google Scholar
  53. Lewis, M. R., Smith, J. C. (1983). A small volume, short-incubation-time method for measuring photosynthesis as a function of incident irradiance. Mar. Ecol. Prog. Ser. 13: 99–102Google Scholar
  54. Ludlow, M. M. (1987). Light stress at high temperature. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 89–110Google Scholar
  55. Margulis, L. (1981). Symbiosis in cell evolution. W.H. Freeman and Company, San FranciscoGoogle Scholar
  56. Maske, H. (1984). Daylight ultraviolet radiation and the photoinhibition of phytoplankton carbon uptake. J. Plankton Res. 6: 351–357Google Scholar
  57. McAuley, P. J. (1986). Isolation of viable uncontaminated Chlorella from green hydra. Limnol. Oceanor. 31: 222–224Google Scholar
  58. Muller-Parker, G. (1984). Photosynthesis-irradiance responses and photosynthetic periodicity in the sea anemone Aiptasia pulchella and its zooxanthellae. Mar. Biol. 82: 225–232Google Scholar
  59. Muller-Parker, G. (1987). Seasonal variation in light-shade adaptation of natural populations of the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943) in Hawaii. J. exp. mar. Biol. Ecol. 112: 165–183Google Scholar
  60. Muscatine, L., McCloskey, L. R., Martin, R. E. (1981). Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26: 601–611Google Scholar
  61. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Pl. Cell Physiol., Tokyo 22: 867–880Google Scholar
  62. Neale, P. J. (1987). Algal photoinhibition and photosynthesis in the aquatic environment. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 39–65Google Scholar
  63. Ogren, W. L. (1984). Photorespiration: pathways, regulation, and modification. A. Rev. Pl. Physiol. 35: 415–442Google Scholar
  64. Osmond, C. B. (1981). Photorespiration and photoinhibition, some implications for the energetics of photosynthesis. Biochim. Biophys. Acta. 639: 77–98Google Scholar
  65. Oyanagui, Y. (1984). Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Analyt. Biochem. 142: 290–296Google Scholar
  66. Palincsar, J. S., Jones, W. R., Palincsar, E. E. (1988). Effects of isolation of the endosymbiont Symbiodinium microadriaticum (Dinophyceae) from its host Aioptasia pallida (Anthozoa) on cell wall ultrastructure and mitotic rate. Trans. Am. microsc. Soc. 107: 53–66Google Scholar
  67. Patton, J. S., Burris, J. E. (1983). Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar. Biol. 75: 137–149Google Scholar
  68. Platt, T., Gallegos, C. L., Harrison, W. G. (1980). Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. mar. Res. 38: 687–701Google Scholar
  69. Porter, J. W., Muscatine, L., Dubinsky, Z., Falkowski, P. G. (1984). Primary production and photoadaptation in light- and shadeadapted colonies of the symbiotic coral, Stylophora pistillata. Proc. R. Soc. Lond. (Ser. B) 222: 161–180Google Scholar
  70. Powles, S. B. (1984). Photoinhibition of photosynthesis induced by visible light. A. Rev. Pl. Physiol. 35: 15–44Google Scholar
  71. Prézelin, B. B. (1987). Photosynthetic physiology of dinoflagellates. In: Taylor, F. J. R. (ed.). The biology of dinoflagellates. Blackwell, Oxford, p. 174–223Google Scholar
  72. Ralston, M. L., Jenrich, R. I. (1978). DUD, a derivative-free algorithm for nonlinear least squares. Technometrics 20: 7–14Google Scholar
  73. Renger, G., Voss, M., Gräber, P., Schulze, A. (1986). Effects of UV irradiation on different partial reactions of the primary processes of photosynthesis. In: Worrest, R. C., Caldwell, M. M. (eds.) Stratispheric ozone reduction, solar ultraviolet radiation and plant life. Springer-Verlag, New York, p. 171–184Google Scholar
  74. Richardson, K., Beardall, J., Raven, J. A. (1983). Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157–191Google Scholar
  75. Roberts, L. (1987). Coral bleaching threatens Atlantic reefs. Science, N.Y. 238: 1228–1229Google Scholar
  76. SAS Institute (1982). SAS user's guide: statistics SAS Institute Inc., Cary, North Carolina, USAGoogle Scholar
  77. Schoneberg, D. A., Trench, R. K. (1980). Genetic variation in Symbiodinium microadriaticum (Freudenthal) and specificity in its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. (Ser. B) 207: 429–444Google Scholar
  78. Shick, J. M., Dykens, J. A. (1985). Oxygen detoxification in algal-invertebrate symbioses from the Grerat Barrier Reef. Oecologia 66: 33–41Google Scholar
  79. Siebeck, O. (1988). Experimental investigation of UV tolerance in hermatypic corals (Scleractinia). Mar. Ecol. Prog. Ser. 43: 95–103Google Scholar
  80. Sisson, W. B. (1986). Effects of UV-B radiation on photosynthesis. In: Worrest, R. C., Caldwell, M. M. (eds.) Stratispheric ozone reduction, solar ultraviolet radiation and plant life. Springer-Verlag, New York, p. 161–169Google Scholar
  81. Smith, C. S., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem. Photobiol. 29: 311–323Google Scholar
  82. Sokal, R. R., Rohlf, F. J. (1979). Biometry, 2nd ed. W. H. Freeman and Co., San FranciscoGoogle Scholar
  83. Spinrad, R. W., Yentsch, C. M. (1987). Observations on the intra-and interspecific single cell optical variability of marine phytoplankton. Appl. Optics (Easton, Pa.) 26: 357–362Google Scholar
  84. Steen, R. G. (1986). Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella. Biol. Bull. mar. biol. Lab, Woods Hole. 170: 267–278Google Scholar
  85. Sterrer, W. (ed.) (1986). Marine flora and fauna of Bermuda. Wiley-Interscience, New YorkGoogle Scholar
  86. Thinh, L. V., Griffiths, D. J., Winsor, H. (1986). Ultrastructure of Symbiodinium microadriaticum (Dinophyceae) symbiotic with Zoanthus sp. (Zoanthidea). Phycologia 25: 178–184Google Scholar
  87. Trench, R. K. (1979). The cell biology of plant-animal symbiosis. A. Rev. Pl. Physiol. 30: 485–531Google Scholar
  88. Trench, R. K., Blank, R. J. (1987). Symbiodinum microadriaticum Freudenthal, S. Goreauii sp. nov., S. kawagutii sp. nov., S. pilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J. Phycol., 23: 469–481Google Scholar
  89. Tytler, E. M., Trench, R. K. (1986). Activities of enzymes in β-carboxylation reactions and of catalase in cell-free preparations from the symbiotic dinoflagellates Symbiodinium spp. from a coral, a clam, a zoanthid and two sea anemones. Proc. R. Soc. Lond. (Ser. B) 228: 483–492Google Scholar
  90. Valenzeno, D. P., Pooler, J. P. (1987). Photodynamic action. BioSci. 37: 270–276Google Scholar
  91. Weis, V. M., Smith, G. J., Muscatine, L. (1989). A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar. Biol. 100: 195–202Google Scholar
  92. Wilkerson, F. P., Kobayashi, D., Muscatine, L. (1988). Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7: 29–36Google Scholar
  93. Wood, W. F. (1987). Effect of solar ultra-violet radiation on the kelp Ecklonia radiata. Mar. Biol. 96: 143–150Google Scholar
  94. Worrest, R. C. (1982). Review of literature concerning the impact of UV-B radiation upon marine organisms In: Calkins, J. (ed.). The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York, p. 429–457Google Scholar
  95. Yentsch, C. M., Horan, P. K., Muirhead, K., Dortch, Q., Haugen, E. Legendre, L., Murphy, L. S., Perry, M. J., Phinney, D. A., Pomponi, S. A., Spinrad, R. W., Wood, M., Yentsch, C. S., Zahuranec, B. J. (1983). Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnol. Oceanogr. 28: 1275–1280Google Scholar
  96. Zar, J. H. (1984). Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J.Google Scholar
  97. Zimmerman, R. C., SooHoo, J. B., Kremer, J. N., D'Argenio, D. Z. (1987). Evaluation of variance approximation techniques for non-linear photosynthesis-irradiance models. Mar. Biol. 95: 209–215Google Scholar
  98. Zvalinskii, V. I., Leletkin, V. A., Titlyanov, E. A., Shaposhnikova, M. G. (1980). Photosynthesis and adaptation of corals to irradiance. 2. Oxygen exchange. Photosynthetica (Praha, Czecholslovakia) 14: 422–430Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. P. Lesser
    • 1
  • J. M. Shick
    • 1
  1. 1.Department of Zoology and Center for Marine StudiesUniversity of MaineOronoUSA
  2. 2.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborUSA

Personalised recommendations