Marine Biology

, Volume 94, Issue 3, pp 479–487

Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antarctica

  • J. B. McClintock
Article

Abstract

The biochemical and energetic composition, spicule content, and toxicity of benthic sponges was investigated in McMurdo Sound, Antarctica from October through December 1984. The predominant organic constituent of sponges was soluble and insoluble protein. Levels of total protein ranged from 17.0 to 55.9% dr. wt. Levels of lipid and carbohydrate were low, ranging from 2.1 to 9.6 and 0.6 to 3.5% dr. wt, respectively. Levels of ash were high and variable (32 t0 79% dr. wt), reflecting species-specific differences in spicule contents. Calculated energy contents of sponges were low, with a mean of 9.8±3.5 kJ g-1 dr. wt; ranging from 5.1 kJ g-1 dr. wt in Sphaerotylus antarcticus to 17.4 kJ g-1 dr. wt in Dendrilla membranosa. Insoluble protein accounted for the greatest contribution to the energetic composition of the sponges, while lipid and carbohydrate combined contributed to less than 25% of the overall energy. Normalized spicule volumes of sponges ranged from 0.15 to 0.38 cm3 g-1 dr. wt. Ichthyotoxicity assays indicated that 9 (56%) of 16 antarctic sponge species were toxic. The most highly toxic species were Mycale acerata and Leucetta leptorhapsis. The high incidence of toxicity in antarctic sponges indicates that the current hypothesis suggesting a simple inverse relationship between toxicity and latitude in marine sponges is invalid. There was little correspondence between the energetic composition or spicule contents of the sponges and feeding patterns (electivity indices) of sponge-eating predators. Although the asteroid Perknaster fuscus antarcticus specializes on the highly toxic, fast-growing M. acerata, most antarctic sponge-eating predators appear to be generalists which feed on the more abundant, non- to mildly-toxic, sponge species. This feeding strategy is based on exploitation of low energy, sedentary prey, which require a minimal energy output to harvest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Allen, P. L.: Feeding behavior of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. J. exp. mar. Biol. Ecol. 70, 79–90 (1983)Google Scholar
  2. Annett, C. and R. Pierotti: Foraging behavior and prey selection of the leather seastar Dermasterias imbricata. Mar. Ecol. Prog. Ser. 14, 197–206 (1984)Google Scholar
  3. Ayling, A. L.: Factors affecting the spatial distributions of thinly encrusting sponges from temperate waters. Oecologia 60, 412–418 (1983)Google Scholar
  4. Bakus, G. J.: Toxicity in holothurians: a geographic pattern. Biotropica 6, 229–236 (1974)Google Scholar
  5. Bakus, G. J.: Chemical defense mechanisms on the Great Barrier reef, Australia. Science, N.Y. 211, 497–498 (1981)Google Scholar
  6. Bakus, G. J. and G. Green: Toxicity in sponges and holothurians: a geographic pattern. Science, N.Y. 185, 951–953 (1974)Google Scholar
  7. Bakus, G. J. and M. A. Thun: Bioassays on the toxicity of Caribbean sponges. In: Sponge biology, Vol. 291. pp 417–422. Ed. by C. Levi and N. Bourny-Esnault. Paris: Centre National de la Recherche Scientifique (C.N.R.S.) 1979Google Scholar
  8. Brody, S.: Bioenergetics and growth, 1023 pp. New York Hafner Publishing Co. Inc. 1945Google Scholar
  9. Burreson, B. J., P. J. Scheuer, J. Finer and J. Clardy: 9-isocyanopupukeanane, a marine invertebrate allomone with a new sesquiterpene skeleton. J. Am. chem. Soc. 97, 4763–4765 (1975)Google Scholar
  10. Burton, M.: Sponges. ‘Discovery’ Rep 6, 237–392 (1932)Google Scholar
  11. Campbell, D. B.: Determination of the foraging strategy of Asterias forbesi (Echinodermata: Asteroidea), 118 pp. Ph.D. dissertation, University of Rhode Island 1983Google Scholar
  12. Crews, P. and S. Naylor: Sesterterpenes: an emerging group of metabolites from marine and terrestrial organisms. In: Progress in the chemistry of organic natural products, pp 203–269. Ed. by W. Hertz, H. Grisebach, G. W. Kirby and Ch. Tamm. New York: Springer-Verlag 1985Google Scholar
  13. Dayton, P. K.: Observations on growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In: Sponge biology, Vol. 291. pp 271–282. Ed. by C. Levi and N. Bourny-Esnault. Paris: Centre National de la Recherche Scientifique (C.N.R.S.) 1979Google Scholar
  14. Dayton, P. K., G. A. Robilliard, R. T. Paine and L. B. Dayton: Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974)Google Scholar
  15. Dearborn, J. H.: Foods and feeding characteristics of Antarctic asteroids and ophiuroids. In: Adaptations within Antarctic ecosystems, pp 293–326. Ed. by G. A. Llano. Washington: Smithsonian Institution 1977Google Scholar
  16. Dubois, M., K. A. Gilles, J. K. Hamilton P. A. Rebers and R. Smith: Colorimetric determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956)Google Scholar
  17. Freeman, N. K., F. T. Lindgren, Y. C. Ng and A. V. Nichols: Infrared spectra of some lipoproteins and related lipids. J. biol. Chem. 203, 293–304 (1957)Google Scholar
  18. Green, G.: Ecology of toxicity in marine sponges. Mar. Biol. 40, 207–215 (1977)Google Scholar
  19. Harrold, C.: Escape response and prey availability in a kelp forest predator-prey system. Am. Nat. 119, 132–135 (1982)Google Scholar
  20. Hughes, R. N.: Optimal foraging in the marine context. Oceanogr. mar. Biol. A. Rev. 18, 423–481 (1980)Google Scholar
  21. Jangoux, M.: Food and feeding mechanisms: Asteroidae. In: Echinoderm nutrition, pp 117–159. Ed. by M. Jangoux and J. M. Lawrence. Rotterdam: Balkema Press 1982Google Scholar
  22. Jost, P.: “Optimal foraging” un test de la theorie avec l'asterie Astropecten aranciacus. Symbioses 15, 227–229 (1983)Google Scholar
  23. Koltun, V. M.: Spicules of sponges as an element of the bottom sediments of the Antarctic. In: Symposium on Antarctic Oceanography, Santiago de Chile 1966, pp 1–268. Cambridge: Scott Polar Research Institute 1968Google Scholar
  24. Lawrence, J. M., J. B. McClintock and A. Guille: Organic level and caloric content of eggs of brooding asteroids and an echinoid (Echinodermata) from Kerguelen (South Indian Ocean). Int. J. Invertebrate Reprod. Develop. 7, 249–257 (1984)Google Scholar
  25. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  26. Manes, L. V., S. Naylor, P. Crews and G. J. Bakus: Suvanine, a novel sesterterpene from an Ircinia marine sponge. J. org. Chem. 50, 284–286 (1985)Google Scholar
  27. McClintock, J. B.: On estimating energetic values of prey: implication in optimal diet models. Oecologia 70, 161–162 (1986)Google Scholar
  28. McClintock, J. B. and J.M. Lawrence: An optimization study on the feeding behavior of Luidia clathrata (Say) (Echinodermata: Asteroidea). Mar. Behav. Physiol. 7, 263–275 (1981)Google Scholar
  29. McClintock, J. B. and J. M. Lawrence: Ingestive conditioning in Luidia clathrata (Say) (Echinodermata: Asteroidea): effect of nutritional condition on selectivity, teloreception, and rates of ingestion. Mar. Behav. Physiol. 10, 167–181 (1984)Google Scholar
  30. McClintock, J. B. and J. M. Lawrence: Characteristics of foraging in the soft-bottom benthic starfish Luidia clathrata (Echinodermata: Asteroidea): prey selectivity, switching behavior, functional responses and movement patterns. Oecologia 66, 291–298 (1985)Google Scholar
  31. McClintock, J. B. and J. S. Pearse: Biochemical composition of antarctic echinoderms. Comp. Biochem. Physiol. (In press, a)Google Scholar
  32. McClintock, J. B. and J. S. Pearse: Biochemical and energetic content of eggs and juveniles of antarctic lecithotrophic asteroids and echinoids. Comp. Biochem. Physiol. (In press, b)Google Scholar
  33. Myers, B. L. and P. Crews: Chiral ether glycerides from a marine sponge. J. org. Chem. 48, 3583–3585 (1983)Google Scholar
  34. Neudecker, S.: Effects of grazing and browsing fishes on the zonation of corals in Guam. Ecology 60, 666–672 (1979)Google Scholar
  35. Ormond, R. F. G., N. J. Hanscomb and D. J. Beach: Food selection and learning in the crown-of-thorns starfish, Acanthaster planci. Mar. Behav. Physiol. 4, 93–105 (1976)Google Scholar
  36. Paine, R. T.: Size-limited predation: an observational and experimental approach with the Mytilus-Pisaster interaction. Ecology 57, 858–873 (1976)Google Scholar
  37. Palmer, A. R.: Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution, Lawrence, Kansas 33, 697–713 (1979)Google Scholar
  38. Pyke, G. H.: Optimal foraging theory: a critical review. A. Rev. Ecol. Syst. 15, 523–575 (1984)Google Scholar
  39. Randall, J. E. and W. D. Hartman: Sponge-feeding fishes of the West Indies. Mar. Biol. 1, 216–225 (1968)Google Scholar
  40. Scheibling, R. E.: Optimal foraging movements of Oreaster reticulatus (L.) (Echinodermata: Asteroidea). J. exp. mar. Biol. Ecol. 51, 173–185 (1981)Google Scholar
  41. Schoener, T. W.: Theory of feeding strategies. A. Rev. Ecol. Syst. 2, 369–404 (1971)Google Scholar
  42. Sloan, N. A.: Aspects of the feeding biology of asteroids. Oceanogr. mar. Biol. A. Rev. 18, 57–124 (1980)Google Scholar
  43. Sokal, R. R. and F. J. Rohlf: Biometry. The principles and practice of statistics in biological research, 776 pp. San Francisco: W. H. Freeman & Co. 1969Google Scholar
  44. Takahashi, M. and T. Nemoto: The food of some antarctic fish in the Western Ross Sea in summer 1979. Polar Biol. 3, 237–239 (1984)Google Scholar
  45. Targett, T. E.: Trophic ecology and structure of coastal antarctic fish communities. Mar. Ecol. Prog. Ser. 4, 243–263 (1981)Google Scholar
  46. Thompson, J. E. R. P. Walker and D. J. Faulkner: Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA. Mar. Biol. 88, 11–21 (1985)Google Scholar
  47. Thompson, J. E., R. P. Walker, S. J. Wratten and D. J. Faulkner: A chemical defense mechanism for the nudibranch Cadlina luteomagrinata. Tetrahedron 38, 1865–1873 (1982)Google Scholar
  48. Vanderploeg, H. A. and D. Scavia: Two electivity indices for feeding with special reference to zooplankton grazing. J. Fish. Res. Bd. Can. 36, 362–365 (1979)Google Scholar
  49. Vermeij, G. J.: Biogeography and adaptation, 332 pp. Boston: Harvard University Press 1978Google Scholar
  50. Wang, C. M., M. Tanaka and Y. Hashimoto: Depolarizing action of Haliclona toxin on endplate and muscle membranes. Toxicon 11, 499–508 (1973)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. B. McClintock
    • 1
    • 2
  1. 1.Institute of Marine SciencesUniversity of CaliforniaSanta CruzUSA
  2. 2.Moss Landing Marine LaboratoriesMoss LandingUSA

Personalised recommendations