Marine Biology

, Volume 94, Issue 3, pp 469–477 | Cite as

Sediment ammonium availability and eelgrass (Zostera marina) growth

  • W. C. Dennison
  • R. C. Aller
  • R. S. Alberte


The interaction of sediment ammonium (NH 4 + ) availability and eelgrass (Zostera marina L.) growth, biomass and photosynthesis was investigated using controlled environment and in-situ manipulations of pore water ammonium concentrations. Sediment diffusers were used to create pore water diffusion gradients to fertilize and deplete ammonium levels in sediments with intact eelgrass rhizospheres. Between October, 1982 and September, 1983 controlled environment experiments using plants from shallow (1.3 m) and deep (5.5 m) stations in a Great Harbor, Woods Hole, Massachusetts, USA eelgrass meadow along with in-situ experiments at these stations provided a range of sediment ammonium concentrations between 0.1 and 10 mM (adsorbed+interstitial NH 4 + ). The results of the in-situ experiments indicate that nitrogen limitation of eelgrass growth does not occur in the Great Harbor eelgrass meadow. A comparison of NH 4 + regeneration rates and eelgrass nitrogen requirements indicates an excess of nitrogen supply over demand and provides an explanation for the lack of response to the manipulations. Results of controlled environment experiments combined with in-situ results suggest that sediment ammonium pool concentrations above approximately 100 μmol NH 4 + per liter of sediment (interstitial only) saturate the growth response of Zostera marina.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aller, R. C. and J. Y. Yingst: Relationships between microbial distribution and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Mar. Biol. 56, 29–42 (1980)Google Scholar
  2. Arnon, D. I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949)Google Scholar
  3. Beevers, L.: Nitrogen metabolism in plants, 333 pp. London: E. Arnold 1976Google Scholar
  4. Billen, G.: A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuar. cstl mar. Sci. 7, 127–146 (1978)Google Scholar
  5. Blackburn, T. H.: Method for measuring rates of NH4+ turnover in anoxic marine sediments, using a 15-NH4+ dilution technique. Appl. environ. Microbiol. 37, 760–765 (1979)Google Scholar
  6. Bulthuis, D. A. and W. J. Woelkerling: Effects of in situ nitrogen and phosphorus enrichment of the sediments on the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. J. exp. mar. Biol. Ecol. 53, 193–207 (1981)Google Scholar
  7. Capone, D. G.: Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 10, 67–75 (1982)Google Scholar
  8. den Hartog, C.: The seagrasses of the world, 275 pp. Amsterdam: North-Holland 1970Google Scholar
  9. Dennison, W. C. and R. S. Alberte: Photosynthetic responses of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55, 137–144 (1982)Google Scholar
  10. Dennison, W. C. and R. S. Alberte: Role of daily light peroid in the depth distribution of Zostera marina (eelgrass). Mar. Ecol. Prog. Ser. 25, 51–61 (1985)Google Scholar
  11. Glibert, P. M., J. C. Goldman and E. J. Carpenter: Seasonal variations in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA. Mar. Biol. 70, 237–249 (1982)Google Scholar
  12. Harlin, M. M. and B. Thorne-Miller: Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon. Mar. Biol. 65, 221–229 (1981)Google Scholar
  13. Iizumi, H. and A. Hattori: Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12, 245–256 (1982)Google Scholar
  14. Iizumi, H., A. Hattori and C. P. McRoy: Nitrate and nitrite in interstitial waters of eelgrass beds in relation to the rhizosphere. J. exp. mar. Biol. Ecol. 47, 191–201 (1980)Google Scholar
  15. Iizumi, H., A. Hattori and C. P. McRoy: Ammonium regeneration and assimilation in eelgrass (Zostera marina) beds. Mar. Biol. 66, 59–65 (1982)Google Scholar
  16. Kenworthy, W. J., J. C. Zieman and G. W. Thayer: Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 54, 152–158 (1982)Google Scholar
  17. Klump, J. V. and C. S. Martens: Benthic nitrogen regeneration. In: Nitrogen in the marine environment, pp 411–457. Ed. by E. J. Carpenter and D. G. Capone. New York: Academic Press 1983Google Scholar
  18. Mackin, J. E. and R. C. Aller: Ammonia adsorption in marine sediments. Limnol. Oceanogr. 29, 250–257 (1984)Google Scholar
  19. McRoy, C. P., R. J. Barsdate and M. Nebert: Phosphorus cycling in an eelgrass (Zostera marina L.) ecosystem. Limnol. Oceanogr. 17, 58–67 (1972)Google Scholar
  20. McRoy, C. P. and C. McMillan: Production ecology and physiology of seagrasses. In: Seagrass ecosystems: a scientific perspective, pp 53–87. Ed. by C. P. McRoy and C. Helfferich. New York: Marcel Dekker 1977Google Scholar
  21. Miflin, B. J. and P. J. Lea: The pathway of nitrogen assimilation in plants. Phytochemistry 15, 873–885 (1976)Google Scholar
  22. Orth, R. J.: Effect of nutrient enrichment on growth of the eelgrass Zostera marina in the Chesapeake Bay, Virginia, USA. Mar. Biol. 44, 187–194 (1977)Google Scholar
  23. Patriquin, D. G.: The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Mar. Biol. 15, 35–46 (1972)Google Scholar
  24. Pregnall, A. M., R. D. Smith, T. A. Kursar and R. S. Alberte: Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Mar. Biol. 83, 141–148 (1984)Google Scholar
  25. Rosenfeld, J. K.: Ammonium adsorption in nearshore anoxic sediments. Limnol. Oceanogr. 24, 356–364 (1979)Google Scholar
  26. Short, F. T.: Nitrogen resource analysis and modelling of an eelgrass (Zostera marina L.) meadow in Izembek Lagoon, Alaska, 173 pp. Fairbanks: Univ. of Alaska Ph.D. thesis 1981Google Scholar
  27. Short, F. T.: The response of interstitial ammonium in eelgrass (Zostera marina L.) beds to environmental perturbations. J. exp. mar. Biol. Ecol. 68, 195–208 (1983a)Google Scholar
  28. Short, F. T.: The seagrass, Zostera marina L.: plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot. 16, 149–161 (1983b)Google Scholar
  29. Smith, R. D., W. C. Dennison and R. S. Alberte: Role of seagrass photosynthesis in root aerobic processes. Plant Physiol. 74, 1055–1058 (1984)Google Scholar
  30. Solorzano, L.: Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969)Google Scholar
  31. Thursby, G. B. and M. M. Harlin: Leaf-root interaction in the uptake of ammonia by Zostera marina. Mar. Biol. 72, 109–112 (1982)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • W. C. Dennison
    • 1
  • R. C. Aller
    • 2
  • R. S. Alberte
    • 1
  1. 1.Barnes LaboratoryThe University of ChicagoChicagoUSA
  2. 2.Department of Geophysical SciencesThe University of ChicagoChicagoUSA

Personalised recommendations