Marine Biology

, Volume 101, Issue 3, pp 355–365 | Cite as

Ultrastructure of the integument of a pelagic Crustacean: moult cycle related studies on the Antarctic krill, Euphausia superba

  • C. Buchholz
  • F. Buchholz


The ultrastructure of euphausiid integument was examined in relation to the moult cycle and supplemented by investigations of chitinase activity in the integument and content of N-acetyl-β-D-glucosamine in the hemolymph. The Antarctic krill, Euphausia superba was collected in 1983 in Admiralty Bay, King George Island, Antarctica. Some specimens of the Northern krill, Meganyctiphanes norvegica, from the Danish Kattegat served for comparison. As a major aim of the study, the moult staging system developed for living tissue could be verified by ultrastructural findings. Under experimental high production conditions of the Antarctic summer, no period of rest or “intermoult” between post- and premoult was observed in subadult E. superba. Neither was a resting phase seen at the cellular level, the epidermis remained active. The epidermal gland cells did not show any cyclical changes, and the organelles of protein synthesis were generally well developed in all moult stages. In order to follow the physiological course of events, structural and biochemical methods were combined and showed as a result that the last moult stage before ecdysis is characterized by massive cuticular resorption. The epicuticle remained ultrastructurally unchanged before and after ecdysis, even though its permeability should alter at ecdysis. The existence of muscle insertions which connect the old and the new cuticle across the exuvial space suggests an answer to the question why E. superba is hardly impaired in swimming almost up to the time of ecdysis.


Chitinase Gland Cell Chitinase Activity Biochemical Method Cyclical Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adelung, D. (1971). Untersuchungen zur Häutungsphysiologie der dekapoden Krebse am Beispiel der Strandkrabbe Carcinus maenas. Helgoländer wiss. Meeresunters. 22: 66–119Google Scholar
  2. Bouligand Y. (1965). Sur une architecture torsadée répandue dans de nombreuses cuticules d'arthropodes. C. r. hebd. Séanc. Acad. Sci., Paris 261: 3 665–3 668Google Scholar
  3. Bouligand, Y. (1972). Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4: 189–214Google Scholar
  4. Buchholz, F. (1982). Drach's moult staging system adapted for euphausiids. Mar. Biol. 66: 301–305Google Scholar
  5. Buchholz, F. (1985). Moult and growth in euphausiids. In: Siegfried, W. R., Condy P., Laws, R. M. (eds.) Antarctic nutrient cycles and food webs. Springer Verlag, Heidelberg, p 339–345Google Scholar
  6. Buchholz, F. (In press). Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol.Google Scholar
  7. Buchholz, C., Pehlemann, F.-W., Sprang, R. (1989). The cuticle of krill (Euphausia superba) in comparison to that of other curstaceans. Pesquisa Antarctica Bras. 1Google Scholar
  8. Caveney, S. (1969). Muscle attachment related to cuticle architecture in Apterygota. J. Cell Sci. 4: 541–559Google Scholar
  9. Chassard-Bouchaud, C., Hubert, M. (1973). Étude ultrastructurale du tégument des crustacés Décapodes en fonction du cycle d'intermue. I. Presence de cellules sécrétrices à activité cyclique dans l'épiderme de Palaemon serratus (Pennant). J. Microsc. (Paris) 16: 75–86Google Scholar
  10. Christiansen, M. E., Costlow, J. D., Jr. (1982). Ultrastructural study of the exoskeleton of the estuarine crab Rithropanopeus harrisii: Effect of the insect growth regulator Dimilin R (Diflubenzuron) on the formation of the larval cuticle. Mar. Biol. 66: 217–226Google Scholar
  11. Cuzin-Roudy, J., Tchernigovtzeff, C. (1985). Chronology of the female molt cycle in Siriella armata M. Edw. (Crustacea: Mysidacea) based on marsupial development. J. crust. Biol. 5: 1–14Google Scholar
  12. Filshie, B. K. (1970). The fine structure and deposition of the larval cuticle of the sheep blowfly, Lucilia cuprina. Tissue Cell 2: 479–498Google Scholar
  13. Foster, C. A., Howse, H. D. (1978). Morphological study of gills of the brown shrimp, Paenaeus aztecus. Tissue Cell 10: 77–92Google Scholar
  14. Giraud-Guille, M. M. (1984). Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16: 75–92Google Scholar
  15. Green, J. P., Neff, M. R. (1972). A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4: 137–171Google Scholar
  16. Halcrow, K. (1976). The fine structure of the carapace integument of Daphnia magna (Straus). Cell Tissue Res. 169: 267–276Google Scholar
  17. Ito, S., Winchester, R. J. (1963). The fine structure of the gastric mucosa in the bat. J. Cell Biol. 16: 541Google Scholar
  18. Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27: 137 AGoogle Scholar
  19. Kils, U. (1982). Size dissociation in krill swarms. Lower organisms and their role in the food web. Kieler Meeresforsch. Sonderh. 5: 262–263Google Scholar
  20. Kümmel, G., Claasen, H., Keller, R. (1970). Zur Feinstruktur von Cuticula und Epidermis beim Flußkrebs Orconectes limosus während eines Häutungszyklus. Z. Zellforsch. mikrosk. Anat. 109: 517–551Google Scholar
  21. Lai-Fook, J. (1967). The structure of developing muscle insertions in insects. J. Morphol. 123: 503–528Google Scholar
  22. Lane, N. J. (1981). Tight junctions in arthropod tissues. Int. Rev. Cytol. 73: 243–318Google Scholar
  23. Locke, M. (1969). The structure of an epidermal cell during the development of the protein epicuticle and the uptake of molting fluid in an insect. J. Morphol. 127: 7–40Google Scholar
  24. Neville, A. C. (1975). Biology of the arthropod cuticle. Springer, BerlinGoogle Scholar
  25. Passano, L. M. (1960). Molting and its control. In: Waterman, T. H. (ed.) The physiology of Crustacea. Vol. I. Academic Press, New York, p. 473–536Google Scholar
  26. Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208Google Scholar
  27. Rossner, K. L., Sherman, R. G. (1976). Organization of a skeletal muscle insertion in the crab Carcinus maenas. Trans. Am. Microsc. Soc. 95: 46–55Google Scholar
  28. Sachs, L. (1984). Angewandte Statistik. Springer, BerlinGoogle Scholar
  29. Schultz, T. W., Kennedy, J. R. (1977). Analyses of the integument and muscle attachment in Daphnia pulex (Cladocera, Crustacea). J. submicrosc. Cytol. 9: 37–51Google Scholar
  30. Skinner, D. M. (1962). The structure and metabolism of a crustacean integumentary tissue during a molt cycle. Biol. Bull. mar. biol. Lab., Woods Hole 123: 635–647Google Scholar
  31. Speck, U., Urich, K. (1972). Resorption des alten Panzers vor der Häutung bei dem Flußkrebs Orconectes limosus. Schicksal des freigesetzten N-Acetylglucosamins. J. Comp. Physiol. 78: 210–220Google Scholar
  32. Spindler, K.-D., Buchholz, F. (1988). Partial characterization of chitin degrading enzymes from two euphausiids, Euphausia superba and Meganyctiphanes norvegica. Polar Biol. 9: 115–122Google Scholar
  33. Talbot, P., Clark, W. H., Lawrence, A. L. (1972). Ultrastructural observations of the muscle insertion and modified branchiostegite epidermis in the larval brown shrimp, Penaeus aztecus. Tissue Cell 4: 613–628Google Scholar
  34. Travis, D. F. (1955). The molting cycle of the spiny lobster, Panulirus agus (Latreille). II. Pre-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol. Bull. mar. biol. Lab., Woods Hole 108: 88–112Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • C. Buchholz
    • 1
  • F. Buchholz
    • 2
  1. 1.Anatomisches Institut der Universität KielKielGermany
  2. 2.Department of Marine ZoologyInstitut für Meereskunde an der Universität KielKielGermany

Personalised recommendations