, Volume 59, Issue 1, pp 29–33 | Cite as

Psychopharmacological studies on (-)-nuciferine and its Hofmann degradation product atherosperminine

  • S. K. Bhattacharya
  • R. Bose
  • P. Ghosh
  • V. J. Tripathi
  • A. B. Kay
  • B. Dasgupta
Original Investigations


(-)-Nuciferine and its Hofmann degradation product atherosperminine showed divergent psychopharmacological effects. Because nuciferine has been reported to be a neuroleptic and atherosperminine has some chemical resemblance to dopamine, they were investigated for their dopamine-receptor activities. Nuciferine had a pharmacologic profile of action associated with dopamine-receptor blockade; i.e., it induced catalepsy, inhibited spontaneous motor activity, conditioned avoidance response, amphetamine toxicity and stereotypy. On the other hand, atherosperminine produced effects associated with dopamine receptor stimulation, i.e., stereotypy, increase in spontaneous motor activity and amphetamine toxicity, reversal of haloperidol-induced catalepsy and inhibition of conditioned avoidance response, inhibition of morphine analgesia, and potentiation of the anticonvulsant action of diphenylhydantoin. The results are discussed on the basis of the chemical configuration of the two compounds.

Key words

Aporphine alkaloid and derived arylethylamine Nuciferine Neuroleptic Atherosperminine Dopamine-receptor agonist/antagonist 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bick, I. R. C., Douglas, G. K.: The alkaloids of Atherospermum moschatum Labill. II. Non-phenolic alkaloid. Aust. J. Chem. 18, 1997–2004 (1965)Google Scholar
  2. Bhattacharya, S. K., Bose, R.: Role of brain monoamines and acetylcholine in morphine induced catalepsy in rats. In: Proceedings of the symposium on Drugs and biogenic amines, p. 30. Jaipur: Department of Pharmacology S.M.S. Medical College 1976Google Scholar
  3. Bhattacharya, S. K., Jaiswal, B. K., Reddy, P. K. S. P., Das, P. K.: Studies on the role of brain monoamines in the antinociceptive action of morphine in albino rats. Indian J. Pharmacol. 7, 58–68 (1975)Google Scholar
  4. Bhattacharya, S. K., Sanyal, A. K., Ghosal, S.: Studies on the role of brain monoamines in the potentiation of morphine analgesia by monoamine oxidase inhibitors nialamide and mangiferin in albino rats. In: Drugs and central synaptic transmission, P. B. Bradley and B. N. Dhawan, eds., p. 333. London: Macmillan 1976aGoogle Scholar
  5. Bhattacharya, S. K., Reddy, P. K. S. P., Das, P. K.: Studies on the role of brain monoamines in the anticonvulsant action of diphenylhydantoin and nialamide potentiation of diphenylhydantoin in albino rats. In: Drugs and central synaptic transmission, P. B. Bradley and B. N. Dhawan, eds., p. 155. London: Macmillan 1976bGoogle Scholar
  6. Bhattacharya, S. K., Pandey, V. B., Ray, A. B., Dasgupta, B.: Neuropsychopharmacological studies with (-)-tetrahydrocoptisine. Arzneim. Forsch. 26, 2187–2190 (1976c)Google Scholar
  7. Brucke, F. Th. V., Hornykiewicz, O., Sigg, E. B.: The pharmacology of psychotherapeutic drugs, p. 3. New York: Springer 1966Google Scholar
  8. Cannon, J. G., Khonje, P. R., Long, J. P.: Centrally acting emetics 9. Hofmann and Emde degradation products of nuciferine. J. Med. Chem. 18, 110–112 (1975)Google Scholar
  9. Chopra, R. N., Chopra, I. C., Handa, K. L., Kapur, L. D.: Indigenous drugs of India, p. 606. Calcutta: Dhur 1958Google Scholar
  10. Chopa, R. N., Nayar, S. L., Chopra, I. C.: Glossary of Indian medicinal plants, p. 174. New Delhi: CSIR 1956Google Scholar
  11. Cook, L., Weidley, E.: Behavioural effects of some psychopharmacological agents. Ann. N. Y. Acad. Sci. 66, 740–752 (1957)Google Scholar
  12. Courvoisier, S., Fournel, R., Ducrot, M., Kolsky, M., Koetschet, P.: Proprietes pharmacodynamiques du chlorhydrate de chloro-3-(dimethylamino-3-propyl)-10 phenothiazine (4560 R. P.). Arch. Int. Pharmacodyn. Ther. 92, 305–361 (1953)Google Scholar
  13. Davies, J. A., Jackson, B., Redfern, P. H.: The effect of antiparkinsonism drugs on haloperidol induced inhibition of the conditioned avoidance response in rats. Neuropharmacology 12, 735–740 (1973)Google Scholar
  14. Davies, O. L., Raventos, J., Walpole, A. L. A method for evaluation of analgesic activity using rats. Br. J. Pharmacol. Chemother. 1, 255–264 (1946)Google Scholar
  15. Dews, P. B.: The measurement of the influence of drugs on voluntary activity in mice. Br. J. Pharmacol. Chemother. 8, 46–48 (1953)Google Scholar
  16. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine in gnawing compulsion in rats: Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  17. Ernst, A. M., Smelik, P. G.: Site of action of dopamine and apomorphine in gnawing compulsion behaviour in rats. Experientia 22, 837–838 (1968)Google Scholar
  18. Fog, R.: On stereotypy and catalepsy: studies on the effects of amphetamine and neuroleptics in rats. Acta Neurol. Scand. [Suppl. 50] 48, 1–66 (1972)Google Scholar
  19. Fog, R., Randrup, A., Pakkenberg, H.: Neuroleptic action of quaternary chlorpromazine and related drugs injected into various brain areas in rats. Psychopharmacologia (Berl.) 12, 428–432 (1968)Google Scholar
  20. Fog, R., Randrup, A., Pakkenberg, H.: Intrastriatal injection of quaternary butyrophenones and oxypertine. Neuroleptic effects in rats. Psychopharmacologia (Berl.) 19, 224–230 (1971)Google Scholar
  21. Genovese, E., Zonta, N., Mantegazza, P.: Decreased antinociceptive activity of morphine in rats pretreated intraventricularly with 5,6-dihydroxytryptamine, a long lasting selective depletor of brain serotonin. Psychopharmacologia (Berl.) 32, 359–364 (1973)Google Scholar
  22. Glowinski, J.: Effects of amphetamines on various aspects of catecholamine metabolism in the central nervous system of the rat. In: Amphetamines and related compounds, E. Costa and S. Garattini, eds., p. 301. New York: Raven 1970Google Scholar
  23. Horn, A. S., Cuello, A. C., Miller, R. J.: Dopamine in the mesolimbic system of the rat brain. Endogenous levels and effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity. J. Neurochem. 22, 265–270 (1974)Google Scholar
  24. Janssen, P. A. J.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data; Arzneim. Forsch. 15, 104–117 (1965)Google Scholar
  25. Kirtikar, K. R., Basu, B. D.: Indian Medicinal Plants, Vol. 1, p. 116. New Delhi: Periodical Experts 1935Google Scholar
  26. Macko, E., Douglas, B., Weisbach, J. A.: Studies on the pharmacology of nuciferine and related aporphines. Arch. Int. Pharmacodyn. Ther. 197, 261–273 (1972)Google Scholar
  27. Major, C. T., Pleuvry, B. J.: Effect of α-methyl-p-tyrosine, p-chlorophenylalanine, 1-β-(3,4-dihydroxy)phenylalanine, 5-hydroxytryptophan and diethyldithiocarbamate on the analgesic action of morphine and methylamphetamine in the mouse. Br. J. Pharmacol. 42, 512–521 (1971)Google Scholar
  28. Miller, L. C., Tainter, M. L.: Estimation of ED50 and its error by means of logarithmic probit graph paper. Proc. Soc. Exp. Biol. Med. 57, 261–264 (1944)Google Scholar
  29. Nadkarni, A. K.: Indian Materia Medica, Vol. 1, p. 844. Bombay: Popular Prakashan 1954Google Scholar
  30. Pertwee, R. G.: The ring test — a quantitative method for assaying the cataleptic effect of cannabis in mice. Br. J. Pharmacol. 46, 753–763 (1972)Google Scholar
  31. Pinder, R. M., Buxton, D. A., Green, D. M.: On the dopamine-like action of apomorphine. J. Pharm. Pharmacol. 23, 995–996 (1971)Google Scholar
  32. Randrup, A., Munkvad, I.: Pharmacology and physiology of stereotyped behaviour. In: Catecholamines and their enzymes in the neuropathology of schizophrenia, S. Kety and S. Matthysse, eds., J. Psychiatr. Res. 11, 1 (1974)Google Scholar
  33. Randrup, A., Munkvad, I., Fog, R., Ayhan, I. H.: Catecholamines in activation, stereotypy and level of mood. In: Catecholamines and behaviour, vol. 1, A. J. Friedhoff, ed., p. 89. New York: Plenum 1975Google Scholar
  34. Randrup, A., Munkvad, I., Scheel-Krüger, J.: Mechanisms by which amphetamines produce stereotypy, aggression and other behavioural effects In: Psychopharmacology of sexual disorders and drug abuse, T. Ban, ed. Prague: Avicenum 1973Google Scholar
  35. Samanin, R., Gumulka, W., Valzelli, L.: Reduced effect of morphine in midbrain raphe lesioned rats. Eur. J. Pharmacol. 10, 339–343 (1971)Google Scholar
  36. Scheel-Krüger, J.: Behavioural and biochemical comparison of amphetamine derivatives, cocaine, benztropine and tricyclic antidepressant drugs. Eur. J. Pharmacol. 18, 63–73 (1972)Google Scholar
  37. Tenen, S. S.: Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor. Psychopharmacologia (Berl.) 12, 278–285 (1968)Google Scholar
  38. Thornburg, J. E.: Drug-stimulated locomotor activity after selective inhibition of dopamine and norepinephrine synthesis in the brain. Fed. Proc. 31, 530 (1972)Google Scholar
  39. Toman, J. E.P., Swinyard, E. A., Goodman, L. S.: Properties of maximal seizures and their alterations by anticonvulsant drugs and other agents. J. Neuropsychiatry 9, 231–240 (1946)Google Scholar
  40. Trepanier, D. L., Shriver, K. L., Eble, J. N.: Aryl-substituted triazines with anti-depressant activity. J. Med. Chem. 12, 257–260 (1969)Google Scholar
  41. Tripathi, V. J., Ray, A. B., Dasgupta, B.: Chemical examination of Indian Nelumbo nucifera Gaertn. J. Inst. Chem. (India) 46, 200–202 (1974)Google Scholar
  42. Turner, R. A.: Screening methods in pharmacology, vol. 1, p. 21. New York: Academic 1965Google Scholar
  43. Van Rossum, J. M.: The significance of dopamine receptor blockade for mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther. 160, 492–494 (1966)Google Scholar
  44. Wirth, W.: Versuche zur kombinierten Wirkung von Megaphen mit stark wirksamen Analgetics. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 222, 75–76 (1954)Google Scholar
  45. Zettler, F.: Erfahrungen mit der potenzierten Narkose und dem künstlichen Winterschlaf. Münch. Med. Wochenschr. 95, 1295–1296 (1953)Google Scholar
  46. Zettler, G.: Cataleptic state and hypothermia in mice caused by central cholinergic stimulation and antagonised by anticholinergic and antidepressant drugs. Int. J. Neuropharmacol. 7, 325–335 (1968)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • S. K. Bhattacharya
    • 1
  • R. Bose
    • 1
  • P. Ghosh
    • 1
  • V. J. Tripathi
    • 2
  • A. B. Kay
    • 2
  • B. Dasgupta
    • 2
  1. 1.Department of Pharmacology, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Medicinal Chemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations