Archives of Microbiology

, Volume 127, Issue 2, pp 125–135 | Cite as

Capacity of chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum

  • Charlotte Kampf
  • Norbert Pfennig


The capacity for chemoautotrophic, mixotrophic and organotrophic growth in the dark was tested with 45 strains of 17 species (11 genera) of the Chromatiaceae. The auxanographic deep agar shake culture method was used; the gas phase contained 5% O2 and 1% CO2 in N2. All strains tested of Chromatium vinosum, C. minus, C. violascens, C. gracile, Thiocystis violacea, Amoebobacter roseus, Thiocapsa roseopersicina gave positive growth responses under chemoautotrophic and mixotrophic conditions (extra carbon source acetate); one strain of Thiocapsa roseopersicina grew also organotrophically on acetate alone. No growth was obtained with the remaining 17 strains of ten species. None of the five type species (three genera) of the Chlorobiaceae grew under chemotrophic conditions. With Thiocystis violacea 2311 a growth yield of 11.3g dry weight per mol thiosulfate consumed was obtained under chemoautotrophic conditions; under mixotrophic conditions with acetate the yield increased to 69g dry weight per mol thiosulfate consumed. With Thiocystis violacea 2311 maximal specific respiration rates were obtained with thiosulfate as electron donor irrespective of the presence or absence of sulfur globules in the cells; organic substrates served as carbon sources only and did not support respiration. With Chromatium vinosum D utilization of thiosulfate was not constitutive; maximal respiration rates on thiosulfate were obtained only with thiosulfate grown cells containing sulfur globules. Respiration rates were further increased by malate, fumarate or propionate; these substrates also served as sole electron donors for respiration. Acetate and pyruvate were used as carbon sources only. The ecological significance of the chemotrophic metabolism is discussed.

Key words

Chromatiaceae Chlorobiaceae Thiocystis violacea Chromatium vinosum Chemolithoautotrophy Mixotrophy Specific respiration rates Growth yields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badziong, W., Thauer, R. K., Zeikus, J. G.: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116, 41–50 (1978)Google Scholar
  2. Biebl, H., Pfennig, N.: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117, 9–16 (1978)Google Scholar
  3. Bogorov, L. V.: About the properties of Thiocapsa roseopersicina strain BBS, isolated from the estuary of the White Sea. Microbiologiya 43, 326–332 (1974)Google Scholar
  4. Breuker, E.: Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Dunkelstoffwechsel. Zbl. Bakt., II. Abt. 118, 561–579 (1964)Google Scholar
  5. Cohn, E. G.: Behaviour of Vibrio fetus in relation to O2. Universidad do Brasil, Rio de Janeiro. An. Microbiol. 10, 147–171 (1962)Google Scholar
  6. Dijken, I. P. van, Harder, W.: Growth yields of microorganisms on methanol and methane: A theoretical study. Biotechnol. Bioeng. 17, 15–30 (1975)Google Scholar
  7. Drews, G., Lampe, H.-H., Ladwig, R.: Die Entwicklung des Photosyntheseapparates von Rhodopseudomonas capsulata. Arch. Mikrobiol. 65, 12–28 (1969)Google Scholar
  8. Fredette, V., Planté, C., Roy, A.: Numerical data concerning the sensitivity of anaerobic bacteria to oxygen. J. Bacteriol. 94, 2012–2017 (1967)Google Scholar
  9. Gemerden, H. van: On the ATP generation by Chromatium in darkness. Arch. Mikrobiol. 64, 118–124 (1968)Google Scholar
  10. Gibson, J.: Aerobic metabolism of Chromatium sp. strain D. Arch. Mikrobiol. 59, 104–112 (1967)Google Scholar
  11. Göbel, F.: Direct measurements of pure absorbance spectra of living phototrophic microorganisms. Biochim. Biophys. Acta (Amst.) 538, 593–602 (1978)Google Scholar
  12. Gorlenko, V. M.: The oxidation of thiosulfate of Amoebobacter roseus in the dark under microaerophilic conditions. Mikrobiologiya 43, 729–731 (1974)Google Scholar
  13. Hempfling, W. P., Vishniac, W.: Yield coefficients of Thiobacillus neapolitanus in continuous culture. J. Bacteriol. 93, 874–878 (1967)Google Scholar
  14. Hurlbert, R. E.: Effect of oxygen on viability and substrate utilization in Chromatium. J. Bacteriol. 93, 1346–1352 (1967)Google Scholar
  15. Justin, P., Kelly, D. P.: Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J. Gen. Microbiol. 107, 123–130 (1978)Google Scholar
  16. Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu. P., Monosov, E. Z.: The capacity of phototrophic sulfur bacterium Thiocopsa roseopersicina for chemosynthesis. Arch. Microbiol. 108, 287–292 (1976)Google Scholar
  17. Niel, C. B. van: The bacterial photosynthesis and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1, 263–328 (1941)Google Scholar
  18. Pfennig, N.: Dark growth phototrophic bacteria under microaerophilic conditions. J. Gen. Microbiol. 61, ii-iii (1970)Google Scholar
  19. Pfennig, N.: The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43, 1–16 (1975)Google Scholar
  20. Pfennig, N., Siefert, E.: Metabolism of C1-compounds by Rhodopseudomonas acidophila. In: Abstracts of the Second International Symposium “Microbial growth on C1-compounds”, pp. 146–147. Pushchino, USSR, 1977Google Scholar
  21. Pfennig, N.: General physiology and ecology of photosynthetic bacteria. In: The photosynthetic bacteria (Clayton, R. C., Sistrom, W. R., eds.), pp. 3–18, New York: Plenum Press 1978Google Scholar
  22. Siefert, E.: Aerobes Wachstum von Rhodopseudomonas mit Wasserstoff oder Methanol im Dunkeln. Zbl. Bakt. Hyg., I. Abt. Ref. 256, 409 (1978)Google Scholar
  23. Siefert, E., Irgens, R. L., Pfennig, N.: Phototrophic purple and green bacteria in a sewage treatment plant. Appl. Environ. Microbiol. 35, 38–44 (1978)Google Scholar
  24. Siefert, E., Pfennig, N.: Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch. Microbiol. 122, 177–182 (1979)Google Scholar
  25. Smith, A. J., Lascelles, J.: Thiosulfate metabolism and rhodanese in Chromatium D. J. Gen. Microbiol. 42, 357–370 (1966)Google Scholar
  26. Sorokin, Yu. I.: Role of carbon dioxide and acetate in biosynthesis of sulfate reducing bacteria. Nature (Lond.) 210, 551–552 (1966)Google Scholar
  27. Sorokin, Yu. I.: Interrelations between sulfur and carbon turnover in meromictio lakes. Arch. Hydrobiol. 66, 391–446 (1970)Google Scholar
  28. Thiele, H. H.: Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Arch. Mikrobiol. 60, 124–138 (1968)Google Scholar
  29. Vries, H. de, Stouthamer, A. H.: Factors determing the degree of anaerobiosis of Bifidobacterium strains. Arch. Mikrobiol. 65, 275–287 (1969)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Charlotte Kampf
    • 1
  • Norbert Pfennig
    • 1
  1. 1.Abteilung Ernährungsphysiologie der MikrobenGesellschaft für Biotechnologische Forschung m.b.H.GöttingenFederal Republic of Germany

Personalised recommendations