Psychopharmacology

, Volume 47, Issue 3, pp 217–223 | Cite as

Effects of apomorphine and haloperidol on the acoustic startle response in rats

  • Michael Davis
  • George K. Aghajanian
Animal Studies

Abstract

A series of 3 experiments tested the effects of 0.01, 0.04, 0.19, 0.75, 3.00, and 6.00 mg/kg apomorphine and 0.13, 0.25, and 0.50 haloperidol on the acoustic startle response in rats. Apomorphine markedly facilitated startle amplitude for about 40 min after injection and then depressed startle over the next 40 min. Both the early facilitory and later inhibitory effects were directly related to the dose. Haloperidol (0.5 mg/kg — given 30 min before) completely blocked both the early facilitory and the later depressant effect of apomorphine (3 mg/kg). Haloperidol alone had only a slight depressant effect on startle. The data support the conclusion that DA receptor stimulation enhances acoustic startle amplitude and indicate that a previous report failed to find an effect of apomorphine on startle because startle was only measured 40 min after injection.

Key words

Startle Apomorphine Haloperidol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N. E.: Effects of amphetamine and some other drugs on central catecholamine mechanisms. In: Amphetamines and related compounds, E. Costa and S. Garattini, eds., pp. 447–462. New York: Raven Press 1970Google Scholar
  2. Andén, N. E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Europ. J. Pharmacol. 11, 303–314 (1970)Google Scholar
  3. Andén, N. E., Rubenson, A., Fuxe, K., Hokfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)Google Scholar
  4. Asher, I., Aghajanian, G. K.: 6-Hydroxydopamine lesions of olfactory tubercles and caudate nuclei: effect on amphetamine-induced stereotyped behavior in rats. Brain Res. 82, 1–12 (1974)Google Scholar
  5. Bunney, B. S., Aghajanian, G. K., Roth, R. H.: Comparison of effects of L-Dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons. Nature New Biol. 245, 123–125 (1973)Google Scholar
  6. Bunney, B. S., Walters, J. R., Kuhar, M. J., Roth, R. H., Aghajanian, G. K.: d-and l-amphetamine stereoisomers: comparative potencies in affecting the firing of central dopaminergic and noradrenergic neurons. Psychopharm. Comm. 1, 177–190 (1975)Google Scholar
  7. Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K.: Dopaminergic neurons: effects of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. exp. Ther. 185, 560–571 (1973)Google Scholar
  8. Burki, H. R., Ruch, W., Asper, H.: Effects of clozapine, thioridazine, perlapine and haloperidol on the metabolism of the biogenic amines in the brain of the rat. Psychopharmacologia (Berl.) 41, 27–33 (1975)Google Scholar
  9. Butterworth, R. F., Poignant, J. C., Barbeau, A.: Apomorphine and piribedil in rats: biochemical and pharmacological studies. In: Advances in neurology. D. B. Calne, T. N. Chase and A. Barbeau, eds., pp. 307–326. New York: Raven Press 1975Google Scholar
  10. Chiueh, C. C., Moore, K. E.: Relative potencies of d- and l-amphetamine on the release of dopamine from cat brain in vivo. Res. Commun. Chem. Path. Pharmacol. 7, 189–199 (1974)Google Scholar
  11. Conner, R. L., Stolk, J. M., Barchas, J. D., Levine, S.: Parachlor-phenylalanine and habituation to repetitive auditory startle stimuli in rats. Physiol. Behav. 5, 1215–1219 (1970)Google Scholar
  12. Costall, B., Naylor, R. J.: Actions of dopaminergic agonists on motor function. In: Advances in neurology, D. B. Calne, T. N. Chase, and A. Barbeau, eds., pp. 285–297. New York: Raven Press 1975Google Scholar
  13. Creese, I., Iversen, S. D.: Amphetamine response in rat after dopamine neurone destruction. Nature New Biol. 238, 247–248 (1972)Google Scholar
  14. Creese, I., Iversen, S. D.: The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat. Psychopharmacologia (Berl.) 39, 345–357 (1974)Google Scholar
  15. Davis, M.: Sensitization of the rat startle response by noise. J. comp. physiol. Psychol. 87, 571–581 (1974)Google Scholar
  16. Davis, M., Sheard, M. H.: Habituation and sensitization of the rat startle response: Effects of raphe lesions. Physiol. Behav. 12, 425–431 (1974a)Google Scholar
  17. Davis, M., Sheard, M. H.: Effects of lysergic acid diethylamide (LSD) on habituation and sensitization of the startle response in the rat. Pharmacol. Biochem. Behav. 2, 675–683 (1974b)Google Scholar
  18. Davis, M., Sheard, M. H.: p-Chloroamphetamine (PCA): Acute and chronic effects on habituation and sensitization of the acoustic startle response in rats. Europ. J. Pharmacol. 35, 261–273 (1976)Google Scholar
  19. Davis, M., Svensson, T. H., Aghajanian, G. K.: Effects of d-and l-amphetamine on habituation and sensitization of the acoustic startle response in rats. Psychopharmacologia (Berl.) 43, 1–11 (1975)Google Scholar
  20. Davis, M., Wagner, A. R.: Habituation of the startle response under an incremental sequence of stimulus intensities. J. comp. physiol. Psychol. 67, 486–492 (1969)Google Scholar
  21. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  22. Ernst, A. M., Smelik, P. G.: Site of action of dopamine and apomorphine on compulsive gnawing behavior in rats. Experientia (Basel) 27, 837–838 (1966)Google Scholar
  23. Fechter, L. D.: The effects of L-Dopa, clonidine and apomorphine on the acoustic startle reaction in rats. Psychopharmacologia (Berl.) 39, 331–344 (1974)Google Scholar
  24. Ferris, R. M., Tang, F. L. M., Maxwell, R. A.: A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. J. Pharmacol. exp. Ther. 181, 407–416 (1972)Google Scholar
  25. Fog, R. L., Randrup, A., Pakkenberg, H.: Aminergic mechanisms in corpus striatum and amphetamine induced stereotyped behavior. Psychopharmacologia (Berl.) 11, 179–183 (1967)Google Scholar
  26. Fog, R., Randrup, A., Pakkenberg, H.: Lesions in corpus striatum and cortex of rat brains and the effect on pharmacologically induced stereotyped aggressive and cataleptic behavior. Psychopharmacologia (Berl.) 18, 345–356 (1970)Google Scholar
  27. Fuxe, K., Ungerstedt, U.: Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In: Amphetamines and related compounds, E. Costa and S. Garrattini, eds., pp. 257–288. New York: Raven Press 1970Google Scholar
  28. Harris, J. E., Baldessarini, R. J.: Uptake of [3H]-catecholamines by homogenates of rat corpus striatum and cerebral cortex: Effects of amphetamine analogues. Neuropharmacology 12, 669–679 (1973)Google Scholar
  29. Janssen, P. A. S.: The pharmacology of haloperidol. Int. J. Neuropsychiat. 3, 10–18 (1967)Google Scholar
  30. Kehr, W., Carlsson, A., Lindqvist, M.: Biochemical aspects of dopamine agonists. In: Advances in neurology, D. B. Calne, T. N. Chase, and A. Barbeau, eds., pp. 185–195. New York: Raven Press 1975Google Scholar
  31. Keller, H. H., Bartholini, G., Pletscher, A.: Increase of 3-methoxy-4-hydroxyphenyethylene glycol in rat brain by neuroleptic drugs. Europ. J. Pharmacol. 23, 183–186 (1973)Google Scholar
  32. Lal, S., Sourkes, T. L.: Ontogeny of stereotyped behavior induced by apomorphine and amphetamine in the rat. Arch. int. Pharmacodyn. 202, 171–182 (1973)Google Scholar
  33. Maj, J., Grabowska, M., Gajda, L.: Effect of apomorphine on motility in rats. Europ. J. Pharmacol. 17, 208–214 (1972)Google Scholar
  34. Naylor, R. J., Olley, J. E.: Modification of the behavioral changes induced by amphetamine in the rat by lesions in the caudate nucleus, the caudate-putamen and globus pallidus. Neuropharmacology 11, 91–99 (1972)Google Scholar
  35. Neill, D. B., Boggan, W. O., Grossman, S. P.: Behavioral effects of amphetamine in rats with lesions in the corpus striatum. J. comp. physiol. Psychol. 86, 1019–1030 (1974)Google Scholar
  36. North, R. B., Harik, S. I., Snyder, S. H.: Amphetamine isomers: Influences on locomotor and stereotyped behavior in cats. Pharm. Biochem. Behav. 2, 115–118 (1974)Google Scholar
  37. Randrup, A., Scheel-Krüger, J.: Diethyldithiocarbomate and amphetamine stereotype behavior. J. Pharm. Pharmacol. 18, 752 (1966)Google Scholar
  38. Thornberg, J. E., Moore, K. E.: Dopamine and norepinephrine of l- and d-amphetamine and amantadine. Res. Comm. chem. Path. Pharmacol. 5, 81–89 (1973)Google Scholar
  39. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta physiol. scand. 367, 69–93 (1971)Google Scholar
  40. Von Voigtlander, P. F., Moore, K. E.: Involvement of nigro-striatal neurons in the in vivo release of dopamine by amphetamine, amantadine and tyramine. J. Pharmacol. exp. Ther. 184, 542–552 (1973)Google Scholar
  41. Wallach, M. B., Gershon, S.: The induction and antagonism of central nervous system stimulation-induced stereotyped behavior in the cat. Europ. J. Pharmacol. 18, 22–26 (1972)Google Scholar
  42. Walters, J. R., Bunney, B. S., Roth, R. H.: Piribedil and apomorphine: pre- and postsynaptic effects on dopamine synthesis and neuronal activity. In: Advances in neurology, D. B. Calne, T. N. Chase, A. Barbeau, eds., pp. 273–284. New York: Raven Press 1975Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Michael Davis
    • 1
    • 2
  • George K. Aghajanian
    • 1
    • 2
  1. 1.Yale University School of MedicineUSA
  2. 2.Connecticut Mental Health CenterUSA

Personalised recommendations