Marine Biology

, Volume 96, Issue 2, pp 283–292 | Cite as

Light absorption and utilization among hermatypic corals: a study in Jamaica, West Indies

  • K. D. Wyman
  • Z. Dubinsky
  • J. W. Porter
  • P. G. Falkowski


The chlorophyll specific absorption coefficient (\(\bar k\) c) was measured for zooxanthellae from six hermatypic coral species obtained, where possible, from four depths (1, 10, 30, 50 m) on reef sites near Discovery Bay, Jamaica in February and March 1983. Measurements of photosynthetic rates versus irradiance, as well as cellular and areal chlorophyll a, were also performed on these colonies or sister colonies. Together the data were used to compare minimum quantum requirements (1/Φ m) among species and depths and to assess the importance of light utilization to the growth and depth distribution of these corals. Our data suggest that, although \(\bar k\) c was found to decrease with depth, interspecific differences in \(\bar k\) c do not occur for zooxanthellae from the corals investigated. Minimum quantum requirements (1/Φ m) decreased significantly with depth, thereby reflecting an increase in photosynthetic light utilization efficiency with decreasing irradiance. Interspecific differences in 1/Φ m determinations were suggested but not statistically conclusive. We conclude that interspecific differences in gross photosynthesis, and perhaps growth and depth distribution, are primarily attributable to differences in the light utilization capacity of the whole coral, as reflected by the product of \(\bar k\) c and chlorophyll per unit surface area, and in-situ quantum efficiencies.


Chlorophyll Growth Irradiance Accessory Pigment Hermatypic Coral Quantum Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Atlas, D. and T. T. Bannister: Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species. Limnol. Oceanogr. 25, 157–159 (1980)Google Scholar
  2. Bannister, T. T. and A. D. Weidemann: The maximum quantum yield of phytoplankton photosynthesis in situ. J. Plankt. Res. 6, 275–294 (1984)Google Scholar
  3. Chalker, B. E.: Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar. Biol. 63, 135–141 (1981)CrossRefGoogle Scholar
  4. Chang, S. S., B. B. Prézelin and R. K. Trench: Mechanisms of photoadaption in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar. Biol. 76, 219–229 (1983)CrossRefGoogle Scholar
  5. Chang, S. S. and R. K. Trench. Peridinin-chlorophyll a proteins from the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum, Freudenthal. Proc. R. Soc. London B 215, 191–210 (1982)Google Scholar
  6. Dennison, W. C. and D. J. Barnes: Effect of water motion on coral photosynthesis and calcification. (Unpublished data)Google Scholar
  7. Dubinsky, Z.: Light utilization efficiency in natural phytoplankton communities. In: Primary productivity in the sea, pp 83–98. Ed. by P. G. Falkowski. New York: Plenum Press 1980Google Scholar
  8. Dubinsky, Z., T. Berman and F. Schanz: Field experiments for in situ measurment of photosynthetic efficiency and quantum yield. J. Plankt. Res. 6, 339–349 (1984a)Google Scholar
  9. Dubinsky, Z., P. G. Falkowski, J. W. Porter and L. Muscatine: Absorption and utilization of radiant energy by light- and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc. R. Soc. Lond. B. 222, 203–214 (1984b)Google Scholar
  10. Dubinsky, Z., P. G. Falkowski and D. Sharf: Aspects of adaption of hermatypic corals and their endosymbiotic zooxanthellae to light. In: Proc. Int. Conf. on Mar. Sci. in the Red Sea. Ed. by M. F. Thompson, A. Latif and A. Bayoumi. Bull. Inst. Oceanogr. Fish. 9, 124–134 (1983)Google Scholar
  11. Dubinsky, Z., P. G. Falkowski and K. Wyman: Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 27, 1335–1349 (1986)Google Scholar
  12. Dustan, P.: Depth dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis. Mar. Biol. 68, 253–264 (1982)CrossRefGoogle Scholar
  13. Dustan, P.: Studies on the bio-optics of coral reefs. In: The ecology of coral reefs, Vol. 3, pp 189–198. Ed. by M. L. Reaka. Symp. Ser. For Underwater Res. Wash. D. C.: US Dept. Commerce 1985Google Scholar
  14. Falkowski, P. G.: Light-shade adaption in marine phytoplankton. In: Primary productivity in the sea, pp 99–120. Ed. by P. G. Falkowski. New York: Plenum Press 1980Google Scholar
  15. Falkowski, P. G. and Z. Dubinsky: Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature, Lond. 289, 172–174 (1981)CrossRefGoogle Scholar
  16. Falkowski, P. G., Z. Dubinsky and K. Wyman: Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30, 311–321 (1985)Google Scholar
  17. Gallagher, J. C. and R. S. Alberte: Photosynthetic and cellular photoadaptive characteristics of three ecotypes of the marine diatom Skeletonema costatum. J. exp. mar. Biol. Ecol. 94, 233–250 (1985)CrossRefGoogle Scholar
  18. Geider, R. J. and B. A. Osborne: Light absorption, photosynthesis and growth of Nannochloris atomus in nutrient saturated cultures. Mar. Biol. 93, 351–360 (1986)CrossRefGoogle Scholar
  19. Goreau, T. F. and N. I. Goreau: The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under different conditions. Biol. Bull. mar. Biol. Lab., Woods Hole 117, 239–250 (1959)Google Scholar
  20. Goreau, T. F., and J. W. Wells: The shallow-water scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull. mar. Sci. 17, 442–443 (1967)Google Scholar
  21. Harris, G. P.: Photosynthesis, productivity and growth. The physiological ecology of phytoplankton. Ergeb. Limnol. 10, 1–171 (1978)Google Scholar
  22. Herron, H. A. and D. Mauzerall: The development of photosynthesis in a greening mutant of Chlorella and an analysis of the light saturation curve. Plant Physiol. 50, 141–148 (1972)PubMedCrossRefGoogle Scholar
  23. Hill, R. and F. Bendall: Function of two cytochrome components in chloroplasts: a working hypothesis. Nature, Lond. 186, 136–137 (1960)CrossRefGoogle Scholar
  24. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes and J. D. Strickland: Fluorometric determination of chlorophyll. J. Cons. perm. int. Explor. Mer 30, 3–15 (1965)Google Scholar
  25. Jassby, A. D. and T. Platt: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976)Google Scholar
  26. Jeffrey, S. W. and G. F. Humphrey: New spectrophotometric equations for determining chlorophylls a, b, c 1, c2in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975)Google Scholar
  27. Johannes, R. E. and W. J. Wiebe: A method for determination of coral tissue biomass and composition. Limnol. Oceanogr. 15, 822–824 (1970)Google Scholar
  28. Kokiel, P. L. and J. I. Morrissey: Influence of size on primary production in the reef coral Pocillopora damicornis and the macroalga Acanthophora spicifera. Mar. Biol. 91, 15–26 (1986)CrossRefGoogle Scholar
  29. Kawaguti, S.: On the physiology of reef corals. Study of the pigments. Palao Tropical Biol. Stud. 2, 319–328 (1944)Google Scholar
  30. Kiefer, D. A. and B. G. Mitchell: A simple, steady state description of phytoplankton growth rates based on absorption cross section and quantum efficiency. Limnol. Oceanogr. 28, 770–776 (1983)CrossRefGoogle Scholar
  31. Kinzie, R. A., P. L. Jokiel and R. York: Effects of light altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar. Biol. 78, 239–248 (1984)CrossRefGoogle Scholar
  32. Kirk, J. T. O.: Light and photosynthesis in aquatic ecosxstems, 401 pp. Cambridge: Cambridge University Press 1983Google Scholar
  33. Kok, B.: Efficiency of photosynthesis. In: Encyclopedia of plant physiology, Vol. V, pp 566–633. Ed. by W. Ruhland. Berlin: Springer Verlag 1960Google Scholar
  34. Marsh, J. A.: Primary productivity of reef building calcareous red algae. Ecology 51, 255–263 (1970)CrossRefGoogle Scholar
  35. Morel, A.: Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res. 25, 673–688 (1978)CrossRefGoogle Scholar
  36. Muscatine, L.: Productivity of zooxanthellae. In: Primary productivity in the sea, pp 381–400. Ed. by P. G. Falkowski. New York: Plenum Press 1980Google Scholar
  37. Porter, J. W.: Primary productivity in the sea: reef corals in situ. In: Primary productivity in the sea, pp 403–410. Ed. by P. G. Falkowski. New York: Plenum Press 1980Google Scholar
  38. Porter, J. W.: The maritime weather of Jamaica: its effects on annual carbon budgets of the massive reef-building coral Montastrea annualaris. Proc. Fifth Int. Coral Reef Cong. Tahiti 6, 363–379 (1985)Google Scholar
  39. Porter, J. W., L. Muscatine, Z, Dubinsky and P. G. Falkowski: Primary production and photoadaption on light and shade adapted colonies of the symbiotic coral Stylophora pistillata Proc. R. Coc. Lond. B 222, 161–180 (1984)CrossRefGoogle Scholar
  40. Porter, J. W., G. J. Smith, J. F. Batley, S. S. Chang and W. K. Fitt: Photoadaption by reef corals to increasing depth. Mar. Bio. (in press)Google Scholar
  41. Prézelin, B. B.: The role of peridimen-chlorophyll a proteins in the photosynthetic light adaption of the marine dinoflagellate, Glenodinium sp. Planta 130, 225–233 (1976)CrossRefGoogle Scholar
  42. Prézelin, B. B.: Light reactions in photosynthesis. In: Physiological bases of phytoplankton ecology. Ed. by T. Platt. Can. Bull. Fish. Aquatic Sci. 210, 1–43 (1981)Google Scholar
  43. Prézelin, B. B., A. C. Ley and F. T. Haxo: Effects of growth irradiance on the photosynthetic action spectra of the marine dinoflagellate Gymnodinium Sp. Planta 130, 251–256 (1976)CrossRefGoogle Scholar
  44. Raven, J. A.: The role of cyclic and noncyclic photophosphorylation and oxidative phosphorylation, and regulation of the rate of ATP consumption in Hydrodictyon africanum. New Phytol. 76, 205–212 (1976)CrossRefGoogle Scholar
  45. Richardson, K., J. Beardall and J. A. Raven: Adapation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93, 157–191 (1983)CrossRefGoogle Scholar
  46. Schoenberg, D. A. and R. K. Trench: Genetic variation in Symbiodinium microadriaticum (Freudenthal) and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic culture of S. microadriaticum. Proc. R. Soc. Lond. B 207, 405–427 (1980a)Google Scholar
  47. Schoenberg, D. A. and R. K. Trench: Genetic variation in Symbiodinium microadriaticum (Freudenthal) and specificity in its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. B 207, 429–444 (1980b)CrossRefGoogle Scholar
  48. Schoenberg, D. A. and R. K. Trench: Genetic variation in Symbiodinium microadriaticum (Freudenthal) and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of S. microadriaticum. Proc. R. Soc. Lond. B 207, 445–460 (1980c)Google Scholar
  49. Wells, J. W.: Corals. Mem. Geol. Soc. Am. 67, 1087–1104 (1957)Google Scholar
  50. Wethey, D. S. and J. W. Porter: Sun and shade differences in productivity of reef corals. Nature, Lond. 262, 281–282 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • K. D. Wyman
    • 1
  • Z. Dubinsky
    • 2
  • J. W. Porter
    • 3
  • P. G. Falkowski
    • 1
  1. 1.Oceanographic Sciences Division, Department of Applied ScienceBrookhaven National LaboratoryUptonUSA
  2. 2.Department of Life SciencesBar Ilan UniversityRamat GanIsrael
  3. 3.Department of ZoologyUniversity of GeorgiaAthensUSA

Personalised recommendations