, Volume 71, Issue 1, pp 29–55 | Cite as

Chromosome banding in amphibia

III. Sex chromosomes in Triturus
  • M. Schmid
  • J. Olert
  • Christine Klett


The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.


Chromosome Pair Chromosome Banding Female Animal Constitutive Heterochromatin Male Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailly, S.: Etude de la fluorescence des chromosomes mitotiques de Pleurodeles waltlii Michah., après coloration par la moutarde de quinacrine. C.R. Acad. Sci. (Paris), 275D, 1267–1270 (1972)Google Scholar
  2. Bailly, S.: Localisation et signification des zones Q observées sur les chromosomes mitotiques de l'amphibien Pleurodeles waltlii Michah. après coloration par la moutarde de quinacrine. Chromosoma (Berl.) 54, 61–68 (1976)Google Scholar
  3. Bailly, S., Guillemin, C., Labrousse, M.: Comparaison du nombre et de la position des zones spécifiques révélées sur les chromosomes mitotiques de l'amphibien urodèle Pleurodeles waltlii Michah. par les techniques de coloration au colorant de Giemsa et à la moutarde de quinacrine. C.R. Acad. Sci. (Paris) 276D, 1867–1869 (1973)Google Scholar
  4. Barsacchi, G., Bussoti, L., Mancino, G.: The maps of the lampbrush chromosomes of Triturus (Amphibia Urodela). IV. Triturus vulgaris meridionalis. Chromosoma (Berl.) 31, 255–279 (1970)Google Scholar
  5. Beçak, W., Beçak, M.L., Nazareth, H.R.S., Ohno, S.: Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma (Berl.) 15, 606–617 (1964)Google Scholar
  6. Blommers-Schlösser, R.M.A.: Cytotaxonomy of the Ranidae, Rhacophoridae, Hyperoliidae (Anura) from Madagascar with a note on the karyotype of two amphibians of the Seychelles. Genetica (Den Haag) 48, 23–40 (1978)Google Scholar
  7. Bogart, J.P.: Karyotypes. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 171–195. Austin-London: University of Texas Press 1972Google Scholar
  8. Bogart, J.P.: Evolution of anuran karyotypes. In: Evolutionary biology of the anurans (J.L. Vial, ed.), pp. 337–349. Columbia: University of Missouri Press 1973Google Scholar
  9. Böök, J.A.: Triploidy in Triton taeniatus Laur. Hereditas (Lund) 26, 107–114 (1940)Google Scholar
  10. Bowen, S.T.: The genetics of Artemia salina. V. Crossing-over between the X and Y chromosomes. Genetics 52, 695–710 (1965)Google Scholar
  11. Bull, J.: Sex chromosome differentiation: an intermediate stage in a lizard. Canad. J. Genet. Cytol. 20, 205–209 (1978)Google Scholar
  12. Callan, H.G.: Heterochromatin in Triton. Proc. roy. Soc. (London) B, 130, 324–335 (1942)Google Scholar
  13. Callan, H.G., Lloyd, E.: Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Phil. Trans. roy. Soc. Lond. 243B, 134–219 (1960)Google Scholar
  14. Callan, H.G., Lloyd, E.: Working maps of the lampbrush chromosomes of amphibia. In: Handbook of genetics (R.C. King, ed.), vol. IV, pp. 57–77. New York: Plenum Press 1975Google Scholar
  15. Callan, H.G., Taylor, J.H.: A radioautographic study of the time course of male meiosis in the newt Triturus vulgaris. J. Cell Sci. 3, 615–626 (1968)Google Scholar
  16. Chang, C.Y., Witschi, E.: Breeding of sex-reversed males of Xenopus laevis Daudin. Proc. Soc. exp. Biol. Med. 89, 150–152 (1955)Google Scholar
  17. Chang, C.Y., Witschi, E.: Genic control and hormonal reversal of sex differentiation in Xenopus. Proc. Soc. exp. Biol. Med. 93, 140–144 (1956)Google Scholar
  18. Evans, E.P., Breckon, G., Ford, C.E.: An air-drying method for meiotic preparations from mammalian testes. Cytogenet. Cell Genet. 3, 289–294 (1964)Google Scholar
  19. Fankhauser, G.: The microscopical anatomy of a haploid, metamorphosed salamander (Triton taeniatus, Laur.). Anat. Rec. 67, Suppl., 31–32 (1936)Google Scholar
  20. Fankhauser, G.: The sex of a haploid, metamorphosed salamander (Triton taeniatus, Laur.). Genetics 22, 192–193 (1937)Google Scholar
  21. Fankhauser, G.: Sex differentiation in a haploid salamander, Triton taeniatus Laur. J. exp. Zool. 79, 35–49 (1938)Google Scholar
  22. Fankhauser, G., Griffiths, R.: Induction of triploidy and haploidy in the newt, Triturus viridescens, by cold treatment of unsegmented eggs. Proc. nat. Acad. Sci. (Wash.) 25, 233–238 (1939)Google Scholar
  23. Fankhauser, G., Humphrey, R.R.: The origin of spontaneous heteroploids in the progeny of diploid, triploid and tetraploid axolotl females. J. exp. Zool. 142, 379–422 (1959)Google Scholar
  24. Fischberg, M.: Veränderungen der Chromosomenzahl bei Triton alpestris nach Kältebehandlung der Eier. Rev. Suisse Zool. 51, 430–436 (1944)Google Scholar
  25. Fischberg, M.: Über die Ausbildung des Geschlechts bei triploiden und einem haploiden Triton alpestris. Rev. Suisse Zool. 52, 407–414 (1945)Google Scholar
  26. Gallien, E.: Démonstration de l' homogamétie du sexe mâle chez le Triton Pleurodeles waltlii Michah. par l'etude de la descendance d'animaux à sexe physiologique inversé, après un traitement homonal gynogène (benzoate d'oestradiol). C. R. Acad. Sci. (Paris) 238, 402–404 (1954)Google Scholar
  27. Gallien, E.: Inversion expérimentale du sexe, sous l'action des hormones sexuelles, chez le Triton Pleurodeles waltlii Michah. Analyse des conséquences génétiques. Bull. Biol. Fr. Belg. 88, 1–51 (1954)Google Scholar
  28. Gehring, A., Hauschtek-Jungen, E.: Synchrone Replikation aller Chromosomen bei Xenopus laevis. Experientia (Basel) 23, 40 (1967)Google Scholar
  29. Haldane, J.B.S.: Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101–109 (1922)Google Scholar
  30. Humphrey, R.R.: Sex of the offspring fathered by two Amblystoma females experimentally converted into males. Anat. Rec. 82, Suppl. 77, 469 (1942)Google Scholar
  31. Humphrey, R.R.: Sex determination in ambystomid salamanders: a study of the progeny of females experimentally converted into males. Amer. J. Anat. 76, 33–66 (1945)Google Scholar
  32. Humphrey, R.R.: Male homogamety in the mexican axolotl: a study of the progeny obtained when germ cells of a genetic male are incorporated in a developing ovary. J. exp. Zool. 134, 91–101 (1957)Google Scholar
  33. Humphrey, R.R., Fankhauser, G.: Structure and functional capacity of the ovaries of higher polyploid (4N, 5N) in the Mexican axolotl (Siredon or Amblystoma mexicanum). J. Morph. 98, 161–198 (1956)Google Scholar
  34. Jalal, S.M., Clark, R.W., Hsu, T.C., Pathak, S.: Cytological differentiation of constitutive heterochromatin. Chromosoma (Berl.) 48, 391–403 (1974)Google Scholar
  35. Kawamura, T., Nishioka, M.: Aspects of the reproductive biology of Japanese anurans. In: The reproductive biology of amphibians (D.H. Taylor and S.I. Guttman, eds.), pp. 103–139. New York-London: Plenum Publishing Corporation 1977Google Scholar
  36. Klinger, H.P., Hammond, D.O.: Rapid chromosome and sex-chromatin staining with pinacyanol. Stain Technol. 46, 43–47 (1971)Google Scholar
  37. Kobel, H.R.: Heterochromosomen bei Vipera berus L. (Viperidae, Serpentes). Experientia (Basel) 18, 173–174 (1962)Google Scholar
  38. Labrousse, M., Guillemin, C., Gallien, L.: Mise en évidence, sur les chromosomes de l'amphibien Pleurodeles waltlii Michah., de secteurs d'affinité différente pour le colorant de Giemsa à pH 9. C. R. Acad. Sci. (Paris) D, 274, 1063–1065 (1972)Google Scholar
  39. Lacroix, J.-C.: Étude descriptive des chromosomes en écouvillon dans le genre Pleurodeles (Amphibien, urodèle). Ann. Embryol. Morphog. 1, 179–202 (1968a)Google Scholar
  40. Lacroix, J.-C.: Variations expérimentales ou spontanées de la morphologie et de l'organisation des chromosomes en écouvillon dans le genre Pleurodeles (Amphibien, urodèle). Ann. Embryol. Morphog. 1, 205–248 (1968b)Google Scholar
  41. Leon, P., Kezer, J.: The chromosomes of Siren intermedia nettingi (Goin) and their significance to comparative salamander karyology. Herpetologica 30, 1–11 (1974)Google Scholar
  42. Mancino, G., Barsacchi, G.: Le mappe dei cromosomi “lampbrush” di Triturus (Anfibi Urodeli). I. Triturus alpestris apuanus. Caryologia (Firenze) 18, 637–665 (1965)Google Scholar
  43. Mancino, G., Barsacchi, G.: The maps of the lampbrush chromosomes of Triturus (Amphibia Urodela). II. Triturus helveticus. Riv. Biol. 59, 339–351 (1966)Google Scholar
  44. Mancino, G., Nardi, I.: Chromosomal heteromorphism and female heterogamety in the marbled newt Triturus marmoratus (Latreille, 1800). Experientia (Basel) 27, 821–822 (1971)Google Scholar
  45. Mancino, G., Nardi, I., Ragghianti, M.: Structural correspondence between nucleolus- and sphereorganizing regions of the lampbrush chromosomes and secondary constrictions of the mitotic chromosomes. Experientia (Basel) 28, 586–588 (1972)Google Scholar
  46. Mancino, G., Ragghianti, M., Nardi, I., Andreuccetti, P.: Sex chromosomes in newts. Boll. Zool. 39, 639 (1972)Google Scholar
  47. Mancino, G., Ragghianti, M., Bucci-Innocenti, S.: Cytotaxonomy and cytogenetics in European newt species. In: The reproductive biology of amphibians (D.H. Taylor and S.I. Guttman, eds.), pp. 411–447. New York-London: Plenum Publishing Corporation 1977Google Scholar
  48. Mikamo, K., Witschi, E.: The mitotic chromosomes in Xenopus laevis (Daudin): normal, sexreversed and female WW. Cytogenet. Cell Genet. 5, 1–19 (1966)Google Scholar
  49. Morescalchi, A.: Conferma della presenza di eterocromosomi in Xenopus laevis Daudin. Rend. Acc. Sci. (Napoli) Ser. 4, 30, 310–314 (1963)Google Scholar
  50. Morescalchi, A.: Il corredo cromosomico di Discoglossus pictus Otth.: Cromosomi sessuali, spiralizzazione cromosomica e zone eterocromatiche. Caryologia (Firenze) 17, 327–345 (1964)Google Scholar
  51. Morescalchi, A.: Comparative karyology of the Amphibia. Boll. Zool. 38, 317–320 (1971)Google Scholar
  52. Morescalchi, A.: Amphibia. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Capanna, eds.), pp. 233–348. London-New York: Academic Press 1973Google Scholar
  53. Morescalchi, A.: Chromosome evolution in the caudate Amphibia. In: Evolutionary biology VIII (T. Dobzhansky, M.K. Hecht and W.C. Steere, eds.), pp. 339–387. New York: Plenum Press 1975Google Scholar
  54. Morgan, G.T.: Absence of chiasmata from the heteromorphic region of chromosome I during spermatogenesis in Triturus cristatus carnifex. Chromosoma (Berl.) 66, 269–280 (1978)Google Scholar
  55. Namur, P.: Étude des chromosomes de la blastula de Triturus vulgaris Linné. Bull. Soc. Linn. Normandie 10, 67–72 (1969)Google Scholar
  56. Namur, P., Signoret, J.: Étude comparée du caryotype de quelques espèces de Tritons communes en Normandie. Bull. Soc. Linn. Normandie 8, 183–194 (1967)Google Scholar
  57. Nardi, I., Ragghianti, M., Mancino, G.: Banding patterns in newt chromosomes by the Giemsa stain. Chromosoma (Berl.) 40, 321–331 (1973)Google Scholar
  58. Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  59. Overton, K.M., Magenis, R.E., Brady, T., Chamberlin, J., Parks, M.: Cytogenetic darkroom magic: now you see them, now you don't. Amer. J. Hum. Genet. 28, 417–419 (1976)Google Scholar
  60. Pariser, K.: Verschiebung des Geschlechtsverhältnisses bei künstlich erzeugten Tritonbastarden. Biol. Zbl. 52, 654–659 (1932)Google Scholar
  61. Ponse, K.: Sur la digamétie du crapaud hermaphrodite. Rev. Suisse Zool. 49, 185–189 (1942)Google Scholar
  62. Ragghianti, M., Nardi, I., Mancino, G.: Completion of the morphology of the lampbrush chromosomes of the Italian alpine newt Triturus alpestris apuanus Bonaparte. Experientia (Basel) 28, 588–590 (1972)Google Scholar
  63. Ragghianti, M., Bucci-Innocenti, S., Mancino, G.: Bandeggiatura indotta da “C-, G- e Q-staining methods” e pattern di replicazione dei cromosomi di Triturus. Rend. Acc. Naz. Lincei, Ser. VIII, 55, 764–770 (1973)Google Scholar
  64. Ray-Chaudhuri, S.P., Singh, L., Sharma, T.: Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma (Berl.) 33, 239–251 (1971)Google Scholar
  65. Schmid, M.: Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma (Berl.) 66, 361–388 (1978)Google Scholar
  66. Schmid, M.: Chromosome banding in Amphibia. II. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae and Rhacophoridae. Chromosoma (Berl.) 68, 131–148 (1978)Google Scholar
  67. Seto, T.: The karyotype of Hyla arborea japonica with some remarks on the heteromorphism of the sex chromosome. J. Fac. Sci. Hokkaido Univ. 15, 366–373 (1964)Google Scholar
  68. Singh, L., Purdom, I.F., Jones, K.W.: Satellite DNA and evolution of sex chromosomes. Chromosoma (Berl.) 59, 43–62 (1976)Google Scholar
  69. Spurway, H.: Sex determination in Triturus vulgaris Linn. (taeniatus Schneid.). Amer. Naturalist 79, 377–380 (1945)Google Scholar
  70. Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)Google Scholar
  71. Swinderen, J.W.M. van: Tydschr. Ned. Dierk. Verb. 1, 95–96 (1928)Google Scholar
  72. Tymowska, J.: Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet. Cell Genet. 12, 297–304 (1973)Google Scholar
  73. Tymowska, J.: A comparative study of the karyotypes of eight Xenopus species and subspecies possessing a 36-chromosome complement. Cytogenet. Cell Genet. 18, 165–181 (1977)Google Scholar
  74. Tymowska, J., Fischberg, M.: Chromosome complements of the genus Xenopus. Chromosoma (Berl.) 44, 335–342 (1973)Google Scholar
  75. Tymowska, J., Kobel, H.R.: Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenet. Cell Genet. 11, 270–278 (1972)Google Scholar
  76. Ullerich, F.-H.: DNS-Gehalt und Chromosomenstruktur bei Amphibien. Chromosoma (Berl.) 30, 1–37 (1970)Google Scholar
  77. Vorontsov, N.N.: The evolution of the sex chromosomes. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Capanna, eds.), pp. 619–657. London-New York: Academic Press 1973Google Scholar
  78. Weiler, C., Ohno, S.: Cytological confirmation of female heterogamety in the African water frog (Xenopus laevis). Cytogenet. Cell Genet. 1, 217–223 (1962)Google Scholar
  79. Weisblum, B.: Fluorescent probes of chromosomal DNA structure: three classes of acridines. Cold Spr. Harb. Symp. quant. Biol. 38, 441–449 (1973)Google Scholar
  80. Weisblum, B., Haenssler, E.: Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma (Berl.) 46, 255–260 (1974)Google Scholar
  81. Weisblum, B., Haseth, de, P.L.: Quinacrine, a chromosome stain specific for deoxyadenylatedeoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)Google Scholar
  82. Wickbom, T.: Cytological studies on Dipnoi, Urodela, Anura and Emys. Hereditas (Lund) 31, 241–346 (1945)Google Scholar
  83. Winge, O., Ditlevsen, E.: Color inheritance and sex determination in Lebistes. Heredity 1, 65–83 (1947)Google Scholar
  84. Witschi, E.: Über die genetische Konstitution der Froschzwitter. Biol. Zbl. 43, 83–96 (1923)Google Scholar
  85. Wolf, K., Quimby, M.C.: Amphibian cell culture: permanent cell line from the bullfrog (Rana catesbeiana). Science 144, 1578–1580 (1964)Google Scholar
  86. Yosida, T.H.: Sex chromosomes of the tree frog Hyla arborea japonica. J. Fac. Sci. Hokkaido Univ. 13, 352–358 (1957)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Schmid
    • 1
  • J. Olert
    • 1
  • Christine Klett
    • 1
  1. 1.Abteilung HumangenetikUniversity of UlmUlmFederal Republic of Germany

Personalised recommendations