Mammalian Genome

, Volume 5, Issue 11, pp 663–669 | Cite as

Deleted Chromosome 20 from a patient with Alagille syndrome isolated in a cell hybrid through leucine transport selection: study of three candidate genes

  • J. F. Deleuze
  • S. Dhorne
  • J. Hazan
  • E. Borghi
  • N. Raynaud
  • N. Pollet
  • M. Meunier-Rotival
  • J. Deschatrette
  • D. Alagille
  • M. Hadchouel
Original Contributions

Abstract

Alagille syndrome (AGS) is a well-defined genetic entity assigned to the short arm of Chromosome (Chr) 20 by a series of observations of AGS patients associated with microdeletions in this region. By fusing lymphoblastoid cells of an AGS patient that exhibited a microdeletion in the short arm of Chr 20 encompassing bands p11.23 to p12.3 with rodent thermosensitive mutant cells (CHOtsH1-l) deficient in-leucyl-tRNA synthetase, we isolated a somatic cell hybrid segregating the deleted human Chr 20. This hybrid clone, designated NR2, was characterized by several methods, including PCR, with eight pairs of oligonucleotides mapped to Chr 20: D20S5, D20S41, D20S42, D20S56, D20S57, D20S58, adenosine deaminase (ADA), and Prion protein (PRIP); Restriction Fragment Length Polymorphism (RFLP) analyses with four genomic anonymous probes (D20S5, cD3H12, D20S17, D20S18); and fluorescent in situ hybridization (FISH) with total human DNA and D20Z1, a sequence specific to the human Chr 20 centromere, as probes.

The NR2 hybrid allowed us to exclude three candidate genes for AGS: hepatic nuclear factor 3 β (HNF3β), paired box 1 (PAX1), and cystatin C (CST3) as shown by their localization outside of the deletion. The NR2 hybrid is a powerful tool for the mapping of new probes of this region, as well as for obtaining new informative probes specific for the deletion by subtractive cloning of the region. Such markers will be useful for linkage analysis and screening of cDNA libraries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, M., Olafsson, I., Palsdottir, A., Ulvsbäck, M., Lundwall, A., Jensson, O., Grubb, A. (1990). Structure and expression of the human cystatin G gene. Biochem. J. 268, 287–294.Google Scholar
  2. Alagille, D., Estrada, A., Hadchouel, M., Gautier, M., Odièvre, M., Dommergues, J.P. (1987). Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J. Pediatr. 110, 195–200.Google Scholar
  3. Al-Hashimi, I., Dickinson, D.P., Levine, M.J. (1988). Purification, molecular cloning, and sequencing of salivary cystatin SA-I. J. Biol. Chem. 263, 9381–9387.Google Scholar
  4. Anad, F., Burn, J., Matthews, D., Cross, I., Davison, B.C.C., Mueller, R., Sands, M., Lillington, D.M., Eastham, E. (1990). Alagille syndrome and deletion of 20p. J. Med. Genet. 27, 729–737.Google Scholar
  5. Avraham, K.B., Prezioco, V.R., Chen, W.S., Lai, E., Sladek, F.M., Zhong, W., Darnell, J.E., Jenkins, N.A., Copeland, N.G. (1992). Murine chromosomal location of four hepatocyte-enriched transcription factors: HNF-3a, HN3b, HNF-3g, and HFN-4. Genomics 13, 264–268.Google Scholar
  6. Balling, R., Deutsch, U., Gruss, P. (1988). Undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell 55, 531–535.Google Scholar
  7. Bass, R., Englesberg, E. (1979). Elucidation of an A and L system for amino acid transport in the human lymphoblast using a membrane filtration technique. In Vitro 15, 829–838.Google Scholar
  8. Berman, M.D., Ishak, K.G., Schaefer, E.J., Barnes, S., Jones, E.A. (1981). Syndromatic hepatic ductular hypoplasia (arteriohepatic dysplasia). A clinical and hepatic histologic study of three patients. Dig. Dis. Sci. 26, 485–497.Google Scholar
  9. Bernard, L.E., Brooks-Wilson, A.R., Wood, S. (1991). Isolation of DNA fragments from a human chromosomal subregion by Alu PCR differential hybridization. Genomics 9, 241–246.Google Scholar
  10. Bobek, L.A., Aguirre, A., Levine, M.J. (1991). Human salivary cystatin S cloning, sequence analysis, hybridization in situ and immunocytochemistry. Biochem. J. 278, 627–635.Google Scholar
  11. Burri, M., Tromvoukis, Y., Bopp, D., Frigerio, G., Noll, M. (1989). Conservation of the paired domain in metazoans and its structure in three isolation human genes. Embo J. 8, 1183–1190.Google Scholar
  12. Byrne, J.L.B., Harrod, M.J.E., Friedmann, J.M., Howard-Peebles, P.N. (1986). del(20p) with manifestations of arteriohepatic dysplasia. Am. J. Med. Genet. 24, 673–678.Google Scholar
  13. Davidson, R.L., Gerald, P.S. (1976). Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somat. Cell Genet. 2, 165–176.Google Scholar
  14. Desmaze, C., Deleuze, J.F., Dutrillaux, A.M., Thomas, G., Hadchouel, M., Aurias, A. (1992). Screening of microdeletions of chromosome 20 in patients with Alagille syndrome. J. Med. Genet. 29, 233–235.Google Scholar
  15. Deutsch, U., Dressler, G.R., Gruss, P. (1988). Pax A, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell 53, 617–625.Google Scholar
  16. Dhorne-Pollet, S., Deleuze, J.F., Hadchouel, M., Bonaiti-Pellié, C. (1994). Segregation analysis of Alagille syndrome. J. Med. Genet., in press.Google Scholar
  17. Driesen, M.S., Dauwerse, J.G., Wapenaar, M.C., Meershoek, E.J., Mollevanger, P., Chen, K.L., Fischbeck, K.H., van Ommen, G.J.B. (1991). Generation and fluorescent in situ hybridization mapping of yeast artificial chromosomes of 1p, 17p, 17q and 19q from a hybrid cell line by high-density screening of an amplified library. Genomics 11, 1079–1087.Google Scholar
  18. Dutta, S., Bharucha, B.A., Vaidya, P.V., Khurandal, S.A., Kher, A.S., Kumta, N.B. (1991). Deletion of short-arm of chromosome 20: 46 XX, del (20)(p11) with unusual skeletal features. Indian J. Pediatr. 58, 701–715.Google Scholar
  19. Freije, J.P., Pendas, A.M., Velasco, G., Roca, A., Abrahamson, M., Lopez-Otin, C. (1993). Localization of the human cystatin D gene (CST5) to chromosome 20p11.21 by in situ hybridization. Cytogenet. Cell Genet. 62, 29–31.Google Scholar
  20. Fryns, J.P., Kleczkowska, A., Decock, P., Massa, G., Van den Berghe, H. (1992). 46,XX/46,XX,del(20)(pter → p12.2) mosaicism limited to fibroblasts associated with MCA/MR and severe growth deficit. Ann. Genet. 35, 234–236.Google Scholar
  21. Giles, R.E., Shimizu, N., Ruddle, F.H. (1980). Assignment of a genetic locus to chromosome 5 which corrects the heat sensitive lesion associated with leucyl t-RNA synthetase activity in ts025Cl Chinese hamster cells. Somat. Cell Genet. 6, 667–687.Google Scholar
  22. Hazan, J., Dubay, C., Pankowiak, M.P., Becuwe, N., Weissenbach, J. (1992). A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers. Genomics 12, 183–189.Google Scholar
  23. Lai, E., Prezioso, V.R., Tao, W., Chen, W.S., Darnell, J.E. (1991). Hepatocyte nuclear factor 3a belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 5, 416–427.Google Scholar
  24. Lobaton, C.D., Morenno, A., Oxender, D.L. (1984). Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity. Mol. Cell Biol. 4, 475–483.Google Scholar
  25. Loiodice, G., Rovetta, D.G., Bellicini, G., Callura, G., Bergamo, F. (1970). Malformazioni multiple congenite in un bambino portatore di una anomalia cromosomica del gruppo F (46/XY, 20-p), figlio di un soggetto, clinicamente sano, affetto da analoga malformazione cromosomica. Minerva Pediatr. 22, 1084–1088.Google Scholar
  26. Saitoh, E., Kim, H.S., Smithies, O., Maeda, N. (1987). Human cysteineproteinase inhibitors: nucleotide sequence analysis of three members of the cystatin gene family. Gene 61, 329–338.Google Scholar
  27. Saitoh, E., Sabatini, L.M., Eddy, R.L., Shows, T.B., Azen, E.A., Isemura, S., Sanada, K. (1989). The human cystatin C gene (CST3) is a member of the cystatin gene family which is localized on chromosome 20. Biochem. Biophys. Res. Commun. 162, 1324–1331.Google Scholar
  28. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).Google Scholar
  29. Schmickel, R.D. (1986). Contiguous gene syndromes: a component of recognizable syndromes. J. Pediatr. 109, 231–241.Google Scholar
  30. Schnittger, S., Hansmann, I. (1991). Regional mapping of two chromosome 20-specific polymorphic DNA markers for loci D20S17 and D20S18 using fluorescent in situ hybridization. Cytogenet. Cell Genet. 58, 2082.Google Scholar
  31. Schnittger, S., Höfers, C., Heidemann, P., Beermann, F., Hansmann, I. (1989). Molecular and cytogenetic analysis of an interstitial 20p deletion associated with syndromic intrahepatic ductular hypoplasia (Alagille syndrome). Hum. Genet. 83, 239–244.Google Scholar
  32. Schnittger, S., Gopal Rao, V.V.N., Deutsch, U., Gruss, P., Balling, R., Hansmann, I. (1992). PAX1, a member of the paired box-containing class of developmental control genes, is mapped to human chromosome 20p11.2 in situ hybridization (ISH and FISH). Genomics 14, 740–744.Google Scholar
  33. Schnittger, S., Gopal Rao, V.V.N., Abrahamson, M., Hansmann, I. (1993). Cystatin C (CST3), the candidate gene for hereditary cystatin C amyloid angiopathy (HCCAA), and other members of the cystatin gene family are clustered on chromosome 20p11.2. Genomics 16, 50–55.Google Scholar
  34. Schwartz, O., Arenzana-Seisdedos, F., Heard, J.M., Danos, O. (1992). Activation pathways and human immunodeficiency virus type 1 replication are not altered in CD4 + T cells expressing the nef protein. AIDS Res. Hum. Retroviruses 8, 545–551.Google Scholar
  35. Shah, K.D., Gerber, A. (1990). Development of intrahepatic bile ducts in humans. Possible role of laminin. Arch. Pathol. Lab. Med. 114, 597–600.Google Scholar
  36. Shohat, M., Herman, V., Melmed, S., Neufeld, N., Schreck, R., Pulst, S., Graham, J.M., Rimoin, D.L., Korenberg, J.R. (1991). Deletion of 20p 11.23Æ pter with normal growth hormone-releasing hormone genes. Am. J. Med. Genet. 39, 56–63.Google Scholar
  37. Shotwell, M.A., Collarini, E.J., Mansukhani, A., Hample, A.E., Oxender, D.L. (1983). Isolation of Chinese hamster ovary cell mutants defective in the regulation of leucine transport. J. Biol. Chem. 258, 8183–8187.Google Scholar
  38. Shulman, S.A., Hyams, J.S., Gunta, R., Greenstein, R.M., Cassidy, S. (1984). Arteriohepatic dysplasia (Alagille syndrome): extreme variability among affected family members. Am. J. Med. Genet. 19, 325–332.Google Scholar
  39. Siracusa, L.D., Silan, C.M., Justice, M.J., Mercer, J.A., Bauskin, A.R., Ben-Neriah, Y., Duboule, D., Hastie, N.D., Copeland, N.G., Jenkins, N.A. (1990). A molecular genetic linkage map of mouse chromosome 2. Genomics 6, 491–504.Google Scholar
  40. Stapleton, P., Weith, A., Urbanek, P., Kozmik, Z., Busslinger, M. (1993). Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nature Genet. 3, 292–298.Google Scholar
  41. Theune, S., Fung, J., Todd, S., Sakaguchi, A.Y., Naylor, S.L. (1991). PCR primers for human chromosomes: reagents for the rapid analysis of somatic cell hybrids. Genomics 9, 511–516.Google Scholar
  42. Thiesse, M., Millar, S.J., Dickinson, D.P. (1994). The human type 2 gene family consists of eight to nine members, with at least seven genes clustered at a single locus on human chromosome 20. DNA Cell Biol. 13, 97–116.Google Scholar
  43. Thompson, L.H., Mankovitz, R., Baker, R.M., Till, J.E., Siminovitch, L., Whitmore, G.F. (1970). Isolation of temperature-sensitive mutants of L-cells. Proc. Natl. Acad. Sci. USA 66, 377–384.Google Scholar
  44. Thompson, L.H., Harkins, J.L., Stanners, C.P. (1973). A mammalian cell mutant with a temperature-sensitive leucyl-transfer RNA synthetase. Proc. Natl. Acad. Sci. USA 70, 3094–3098.Google Scholar
  45. Ting, C.N., Burgess, D.L., Chamberlain, J.S., Keith, T.P., Falls, K., Meisler, M.H. (1993). Phosphoenolpyruvate carboxykinase (GTP): characterization of the human PCK1 gene and localization distal to Mody on chromosome 20. Genomics 16, 698–706.Google Scholar
  46. Uehara, S., Akai, Y., Takoyama, Y., Okamura, K., Takabayashi, T., Yajima, A., Natsui, M., Nakai, H. (1993). A case of female infant with simultaneous occurrence of de novo terminal deletions on chromosome 14q and 20p. Clin. Genet. 43, 28–33.Google Scholar
  47. Walther, C., Guénet, J.-L., Simon, D., Deutsch, U., Jostes, B., Goulding, M.D., Plachov, D., Balling, R., Gruss, P. (1991). Pax: a murine multigene family of paired box-containing genes. Genomics, 11, 424–434.Google Scholar
  48. Williamson, R., Bowcock, A., Kidd, K., Pearson, P., Schmidtke, P. Ceverha, M., Chipperfield, M., Cooper, D.N., Coutelle, C., Hewitt, J., Klinger, K., Langley, K., Beckmann, J., Tolley, M., Maidak, B. (1991). Reports of the DNA Committee and catalogues of cloned and mapped genes markers, formatted for PCR and DNA polymorphism. Cytogenet. Cell Genet. 58, 1588–1595.Google Scholar
  49. Zhang, F., Deleuze, J.F., Aurias, A., Dutrillaux, A.M., Hugon, R.N., Alagille, D., Thomas, G., Hadchouel, M. (1990a) Interstitial deletion of the short arm of chromosome 20 in arteriohepatic dysplasia (Alagille syndrome). J. Pediatr. 116, 73–77.Google Scholar
  50. Zhang, F.R., Heilig, R., Thomas, G., Aurias, A. (1990b). A one-step efficient and specific non-radioactive non-fluorescent method for in situ hybridization of banded chromosomes. Chromosoma 99, 436–439.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • J. F. Deleuze
    • 1
  • S. Dhorne
    • 1
  • J. Hazan
    • 2
  • E. Borghi
    • 3
  • N. Raynaud
    • 1
  • N. Pollet
    • 1
  • M. Meunier-Rotival
    • 1
  • J. Deschatrette
    • 1
  • D. Alagille
    • 1
  • M. Hadchouel
    • 1
  1. 1.INSERM U 347 et Département de PédiatrieLe Kremlin Bicêtre CedexFrance
  2. 2.Unité de génétique moléculaire humaineCNRS URA 1445, Institut PasteurParis Cedex 15France
  3. 3.Laboratoire de biologie de la reproduction et du développementHôpital de Bicêtrele Kremlin Bicêtre CedexFrance

Personalised recommendations