Antonie van Leeuwenhoek

, Volume 47, Issue 5, pp 411–421 | Cite as

Trichosporonoides nigrescens sp. nov., a new xerophilic yeast-like fungus

  • Ailsa D. Hocking
  • J. I. Pitt


A new yeast-like fungus isolated from jam on two occasions is described as Trichosporonoides nigrescens. It is a true xerophile, able to grow at water activities at least as low as 0.75. For this reason, its carbon assimilation pattern was examined using both dilute (standard) and concentrated carbon sources: six to nine compounds not assimilated at the standard concentrations of 0.5% (0.001 to 0.1 mol/kg) were assimilated at 1.5 to 2.0 mol/kg. Cell wall and septal ultrastructure, DNA base ratios, and the nuclear cycle were examined to determine the generic and higher taxonomic affinities of this microorganism. All properties were consistent with its assignment to Trichosporonoides Haskins et Spencer. However, while ultrastructure indicated an affinity with the Basidiomycetes, the mitotic nuclear cycle and the xerophilic nature of this fungus suggested an Ascomycete affinity. The GC content (57%) is consistent with assignment to either. No teleomorphic state was found.


Cell Wall Carbon Source Concentrate Carbon Water Activity Carbon Assimilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. De Hoog, G. S. 1979a. Taxonomic review of Moniliella, Trichosporonoides and Hyalodendron. —Stud. Mycol., Baarn 19: 1–36.Google Scholar
  2. De Hoog, G. S. 1979b. The taxonomic position of Moniliella, Trichosporonoides and Hyalodendron —an essay. — Stud. Mycol., Baarn 19: 81–90.Google Scholar
  3. Dupont, P. F. and Hedrick, L. R. 1971. Deoxyribonucleic acid base composition and numerical taxonomy of yeasts in the genus Trichosporon. — J. Gen. Microbiol. 66: 349–359.Google Scholar
  4. Haskins, R. H. 1975. Septal ultrastructure and hyphal branching in the pleomorphic imperfect fungus Trichosporonoides oedocephalis. — Can. J. Bot. 53: 1139–1148.Google Scholar
  5. Kornerup, A. and Wanscher, J. H. 1978. Methuen Handbook of Colour, 3rd ed. — Eyre Methuen Ltd., London.Google Scholar
  6. Kreger-van Rij, N. J. W. and Veenhuis, M. 1971. A comparative study of the cell wall structure of basidiomycetous and related yeasts. — J. Gen. Microbiol. 68: 87–95.Google Scholar
  7. Martínez, A. T. 1979. Ultrastructure of Moniliella, Trichosporonoides and Hyalodendron. — Stud. Mycol., Baarn 19: 50–57.Google Scholar
  8. Martínez, A. T., De Hoog, G. S., Smith, M. Th., Hogeweg, P. and Bruinsma, P. 1979. Physiological characteristics of Moniliella, Trichosporonoides and Hyalodendron. — Stud. Mycol., Baarn 19: 58–68.Google Scholar
  9. McCully, E. K. and Robinow, C. F. 1972a. Mitosis in heterobasidiomycetous yeasts. I. Leucosporidium scottii (Candida scottii). — J. Cell Sci. 10: 857–881.Google Scholar
  10. McCully, E. K. and Robinow, C. F. 1972b. Mitosis in heterobasidiomycetous yeasts. II. Rhodosporidium sp. (Rhodotorula glutinus) and Aessosporon salmonicolor (Sporobolomyces salmonicolor). — J. Cell Sci. 11: 1–31.Google Scholar
  11. Norrish, R. S. 1966. An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. — J. Food Technol. 1: 25–39.Google Scholar
  12. O'Connor, R. M., McArthur, C. R. and Clark-Walker, G. D. 1976. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 μm. — J. Bacteriol. 126: 959–968.Google Scholar
  13. Pitt, J. I. 1973. An appraisal of identification methods for Penicillium species: novel taxonomic criteria based on temperature and water relations. — Mycologia 65: 1135–1157.Google Scholar
  14. Pitt, J. I. 1975. Xerophilic fungi and the spoilage of foods of plant origin. p. 273–307. In R. B. Duckworth (ed.), Water relations of foods. — Academic Press, London.Google Scholar
  15. Price, C. W., Fuson, G. F. and Phaff, H. J. 1978. Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia. — Microbiol. Rev. 42: 161–193.Google Scholar
  16. Radloff, R., Bauer, W. and Vinograd, J. 1967. A dye-buoyant-density method for the detection and isolation of closed circular DNA in HeLa cells. — Proc. Natl. Acad. Sci. U.S. 57: 1514–21.Google Scholar
  17. Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. — J. Cell Biol. 17: 208–211.Google Scholar
  18. Robinow, C. F. 1961. Mitosis in the yeast Lipomyces lipofer. — J. Biophys. Biochem. Cytol. 9: 879–892.Google Scholar
  19. Schildkraut, C. L., Marmur, J. and Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. — J. Mol. Biol. 4: 430–433.Google Scholar
  20. Storck, R. and Alexopoulos, C. J. 1970. Deoxyribonucleic acid of fungi. — Bacteriol. Rev. 34: 126–154.Google Scholar
  21. Storck, R., Alexopoulos, C. J. and Phaff, H. J. 1969. Nucleotide composition of deoxyribonucleic acid of some species of Cryptococcus, Rhodotorula and Sporobolomyces. — J. Bacteriol. 98: 1069–1072.Google Scholar
  22. Tresner, H. D. and Hayes, J. A. 1971. Sodium chloride tolerance of terrestrial fungi. — Appl. Microbiol. 22: 210–213.Google Scholar
  23. Van der Walt, J. P. 1970. Criteria and methods used in classification. p. 36–113. In J. Lodder, (ed.), The yeasts, a taxonomic study. — North Holland Publ. Co., Amsterdam.Google Scholar
  24. Van der Walt, J. P. and Hopsu-Havu, V. K. 1976. A colour reaction for the differentiation of ascomycetous and hemibasidiomycetous yeasts. — Antonie van Leeuwenhoek 42: 157–163.Google Scholar

Copyright information

© H. Veenman & Zonen B. V. 1981

Authors and Affiliations

  • Ailsa D. Hocking
    • 1
  • J. I. Pitt
    • 1
  1. 1.CSIRO Division of Food ResearchNorth RydeAustralia

Personalised recommendations