Advertisement

Applied Physics B

, Volume 57, Issue 2, pp 131–139 | Cite as

The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)

  • P. Werle
  • R. Mücke
  • F. Slemr
Article

Abstract

Modern research in atmospheric chemistry requires highly sensitive techniques for the measurement of concentrations of free radicals which determine the rate of photochemical destruction of most atmospheric pollutants. Tunable diode-laser absorption spectroscopy (TDLAS) has already been successfully used for measurements of very low concentrations of stable gases, but further improvement in its sensitivity by signal averaging has been limited by the stability of the instrument. In this paper the concept of the Allan variance is utilized to analyze the stability of an existing frequency-modulated (FM) TDLAS instrument leading to a detection limit for NO2 of 34 pptv at 6 Hz detection bandwidth. The stability of the instrument allows averaging over 60 s. Taking into account the measuring cycle consisting of the determination of the sample spectra and zero air spectra as well as gas exchange in the absorption cell, the detection limit achievable with this particular instrument was 10 pptv within 25 s under laboratory conditions. Possibilities of further improvement of the detection limit are discussed.

PACS

07.65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.R. Webster, R.T. Menzies, E.D. Hinkley: In: Laser Remote Chemical Analysis, ed. by R.M. Measures (Wiley, New York 1988) p. 163Google Scholar
  2. 2.
    B.J. Finlayson-Pitts, J.N. Pitts, Jr.: Atmospheric Chemistry (Wiley, New York 1986) p. 326Google Scholar
  3. 3.
    R. Grisar, H. Böttner, M. Tacke, G. Restelli (eds.): Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht 1992)Google Scholar
  4. 4.
    D.R. Hastie, G.I. Mackay, T. Iguchi, B.A. Ridley, H.I. Schiff: Environ. Sci. Technol. 17, 352A (1983)Google Scholar
  5. 5.
    H.I. Schiff, G.W. Harris, G.I. Mackay: In: The Chemistry of Acid Rain. ed. by R.W. Johnson, G.E. Gordon, W. Calkins, A.Z. Elzerman (Am. Chem. Soc., Washington 1987) p. 274Google Scholar
  6. 6.
    P. Warneck: Chemistry of the Natural Atmosphere (Academic, London 1988)Google Scholar
  7. 7.
    D.R. Crosley, J.M. Hoell (eds.): Future Directions forHxOy detection (NASA Conference Publication No. 2448, Washington 1986)Google Scholar
  8. 8.
    G.C. Bjorklund: Opt. Lett. 5, 15 (1980)Google Scholar
  9. 9.
    P. Werle, F. Slemr, M. Gehrtz, Chr. Bräuchle: Appl. Phys. B 49, 99 (1989)Google Scholar
  10. 10.
    J.A. Silver: Appl. Opt. 31, 707 (1992)Google Scholar
  11. 11.
    D.S. Bomse, A.C. Stanton, J.A. Silver: Appl. Opt. 31, 718 (1992)Google Scholar
  12. 12.
    C.R. Webster: J. Opt. Soc. Am. B 2, 1464 (1985)Google Scholar
  13. 13.
    J.A. Silver, A.C. Stanton: Appl. Opt. 27, 4438 (1988)Google Scholar
  14. 14.
    J. Reid, M. El-Sherbiny, B.K. Garside, E.A. Ballik: Appl. Opt. 19, 3349 (1980)Google Scholar
  15. 15.
    C.B. Carlisle, D.E. Cooper: Opt. Lett. 14, 1306 (1989)Google Scholar
  16. 16.
    F. Slemr, G.W. Harris, D.R. Hastie, G.I. Mackay, H.I. Schiff: J. Geophys. Res. 91, 5371 (1986)Google Scholar
  17. 17.
    G.W. Harris, G.I. Mackay, T. Iguchi, H.I. Schiff: J. Atmos. Environ. 8, 119 (1989)Google Scholar
  18. 18.
    F.C. Fehsenfeld, J.W. Drummond, U.K. Roychowdhury, P.J. Galvin, E.J. Williams, M.P. Buhr, D.D. Parrish, G. Hübler, A.O. Langford, J.G. Calvert, B.A. Ridley, F. Grahek, B.G. Heikes, G.L. Kok, J.D. Shetter, J.G. Walega, C.M. Elsworth, R.B. Norton, D.W. Fahey, P.C. Murphy, C. Hovermale, V.A. Mohnen, K.L. Demerjian, G.I. Mackay, H.I. Schiff: J. Geophys. Res. 95, 3579 (1990)Google Scholar
  19. 19.
    J.K. Taylor: Quality Assurance of Chemical Measurements (Lewis, Chelsea 1988) Chap. 14Google Scholar
  20. 20.
    R.O. Gilbert: Statistical Methods for Environmental Pollution Monitoring (van Nostrand Reinhold, New York 1987) Chap. 15Google Scholar
  21. 21.
    I.N. Bronstein. K.A. Semendjajew: Taschenbuch der Mathematik, 19th edn. (Teubner, Leipzig 1979) Chap. 5.2Google Scholar
  22. 22.
    L. Sachs: Angewandte Statistik, 5th edn. (Springer, Berlin, Heidelberg 1978)Google Scholar
  23. 23.
    J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen, W.L. Smith, R.L. Sydnor, R.F.C. Vessot, G.M.R. Winkler: IEEE Trans. IM-20, 105 (1971)Google Scholar
  24. 24.
    D.W. Allan: Proc. IEEE 54, 221 (1966)Google Scholar
  25. 25.
    J.A. Barnes: NBS, Washington, DC. Tech. note 375 (1969)Google Scholar
  26. 26.
    W. Demtröder: Laser Spectroscopy (Springer, Berlin, Heidelberg 1982) p. 225Google Scholar
  27. 27.
    R. Schieder, G. Rau, B. Vowinkel: Proc. SPIE 598, 189 (1985)Google Scholar
  28. 28.
    P. Werle, F. Slemr: Appl. Opt. 30, 430 (1991)Google Scholar
  29. 29.
    HITRAN: L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Picket, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, M.A.H. Smith: Appl. Opt. 26, 4058 (1987)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • P. Werle
    • 1
  • R. Mücke
    • 1
  • F. Slemr
    • 1
  1. 1.Fraunhofer Institute for Atmospheric Environmental ResearchGarmisch-PartenkirchenGermany

Personalised recommendations