Archives of Microbiology

, Volume 130, Issue 4, pp 319–321 | Cite as

Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum

  • Hans-Joachim Perski
  • Johanna Moll
  • Rudolf K. Thauer


Methanobacterium thermoautotrophicum was found to require sodium for growth and for CO2 reduction to methane. The dependence of the rate of growth and methane formation on the sodium concentration was hyperbolic with an apparent Ks for sodium of approximately 1 mM. The findings indicate that sodium has a specific function in the energy metabolism of this bacterium.

Key words

Methanobacterium thermoautotrophicum Sodium CO2 reduction to methane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  2. Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotrophicum. Zbl Bakt Hyg I Abt Orig C, in pressGoogle Scholar
  3. Caldwell DR, Hudson RF (1974) Sodium, an obligate growth requirement for predominant rumen bacteria. Appl Microbiol 27:549–552Google Scholar
  4. Doddema HJ, Hutten TJ, van der Drift C, Vogels GD (1978) ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. J Bacteriol 136:19–23Google Scholar
  5. Doddema HJ, van der Drift C, Vogels GD, Veenhuis M (1979) Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5′-triphosphate synthesis by subcellular particles. J Bacteriol 140:1081–1089Google Scholar
  6. Dundas IED (1977) Physiology of Halobacteriaceae. In: AH Rose, DW Tempest (eds) Advances in microbial physiology, Vol 15. Academic Press, London New York San Francisco, pp 85–120Google Scholar
  7. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate, and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66Google Scholar
  8. Gunsalus RP, Wolfe RS (1977) Stimulation of CO2 reduction to methane by methyl coenzyme M in extracts of Methanobacterium. Biochem Biophys Res Commun 76:790–795Google Scholar
  9. Gunsalus RP, Wolfe RS (1978) ATP activation and properties of the methyl coenzyme M reductase system in Methanobacterium thermoautotrophicum. J Bacteriol 135:851–857Google Scholar
  10. Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397Google Scholar
  11. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987Google Scholar
  12. Mountfort DO (1978) Evidence for ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem Biophys Res Commun 85:1346–1351Google Scholar
  13. Pate GB, Roth LA (1977) Effect of sodium chloride on growth and methane production of methanogens. Can J Microbiol 23:893–897Google Scholar
  14. Reichelt JL, Baumann P (1974) Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch Microbiol 97:329–345Google Scholar
  15. Roberton AM, Wolfe RS (1970) Adenosine triphosphate pools in Methanobacterium. J Bacteriol 102:43–51Google Scholar
  16. Sauer FD, Erfle JD, Mahadevan S (1980a) Methane production by the membranous fraction of Methanobacterium thermoautotrophicum. Biochem J 190:177–182Google Scholar
  17. Sauer FD, Mahadevan S, Erfle JD (1980b) Valinomycin inhibited methane synthesis in Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 95:715–721Google Scholar
  18. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107Google Scholar
  19. Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K S; μmax, Y S) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65Google Scholar
  20. Silver S (1978) Transprot of cations and anions. In: BP Rosen (ed) Bacterial transport, Marcel Dekker, Inc., New York Basel, pp 221–324Google Scholar
  21. Sprott GD, Jarrell KF (1981) K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27:444–451Google Scholar
  22. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–712Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hans-Joachim Perski
    • 1
  • Johanna Moll
    • 1
  • Rudolf K. Thauer
    • 1
  1. 1.Fachbereich Biologie/MikrobiologiePhilipps-Universität MarburgMarburgFederal Republic of Germany

Personalised recommendations