Molecular and General Genetics MGG

, Volume 247, Issue 1, pp 1–6 | Cite as

Light-chain fibroin of Galleria mellonella L.

  • Michal Žurovec
  • Martina Vašková
  • Dalibor Kodrík
  • František Sehnal
  • A. Krishna Kumaran
Original Paper

Abstract

The posterior section of Galleria mellonella silk glands contains two abundant mRNAs that are identical except for the non-coding tail, which includes either two (1.1 kb mRNA) or three (1.2 kb mRNA) consensus sequences for polyadenylation sites. The transcripts are 40% homologous in the coding as well as non-coding regions with the mRNA encoding light-chain fibroin (L-fibroin) in Bombyx mori; the deduced translation product shows 43% identity with the Bombyx L-fibroin peptide, with all three cysteines conserved. Amino acid analysis of the N-termini of Galleria silk proteins revealed that L-fibroin (25 kDa) occurs in two isoforms, the shorter one lacking the Ala-Pro dipeptide residue at its N-terminus. The 29 and 30 kDa Galleria silk proteins appear to be homologs of Bombyx silk component P25. The results suggest that evolutionary diversification of Galleria and Bombyx L-fibroins involves alternative polyadenylation and proteolytic processing sites.

Key words

Fibroin DNA sequence Protein sequence Alternative polyadenylation Proteolytic processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boman HG, Boman IA, Andreu D, Li Z, Merrifield RB, Schlenstadt G, Zimmermann R (1989) Chemical synthesis and enzymic processing of precursor forms of cecropins A and B. J Biol Chem 264:5852–5860Google Scholar
  2. Chevillard M, Deleage G, Couble P (1986) Amino acid sequence and putative conformational characteristics of the 25 kD silk protein of Bombyx mori. Sericologia 26:435–449Google Scholar
  3. Common IFB (1990) Moths of Australia. Brill, LeidenGoogle Scholar
  4. Couble P, Moine A, Garel A, Prudhomme JC (1983) Developmental variations of a nonfibroin mRNA of Bombyx mori silkgland, encoding for a low-molecular-weight silk protein. Dev Biol 97:398–407Google Scholar
  5. Gorg A, Postel W, Weser J (1985) Horizontal SDS electrophoresis in ultrathin foregradient gels for the analysis of urinary proteins. Sci Tools (LKB) 32:5–9Google Scholar
  6. Grzelak K, Couble P, Garel A, Kludkiewicz B, Alrouz H (1988) Low molecular weight silk proteins in Galleria mellonella. Insect Biochem 18:223–228Google Scholar
  7. Johnson DA, Gautsch JW, Sportsman JR, Elder JH (1984) Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal Tech 1:3–8Google Scholar
  8. Kaufman RJ, Sharp PA (1983) Growth-dependent expression of dihydrofolate reductase mRNA from modular cDNA genes. Mol Cell Biol 3:1598–1608Google Scholar
  9. Kikuchi Y, Mori K, Suzuki S, Yamaguchi K, Mizuno S (1992) Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene 110:151–158Google Scholar
  10. Kimura K, Oyama F, Ueda H, Mizuno S, Shimura K (1985) Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia 41:1167–1171Google Scholar
  11. Kodak D (1992) Small protein components of the cocoons in Galleria mellonella (Lepidoptera, Pyralidae) and Bombyx mori (Lepidoptera, Bombycidae). Acta Ent Bohemoslov 89:269–273Google Scholar
  12. Kopáček P, Tesařová Z, Minková Z (1988) Analyses of urine proteins by SDS-polyacrylamide electrophoresis and immunoblotting (in Czech). Biochem Clin Bohemoslov 17:45–54Google Scholar
  13. Kozak M (1989) The scanning model for translation: an update. Mol Cell Biol 9:5134–5142Google Scholar
  14. Kreil G, Haiml L, Suchanek G (1980) Stepwise cleavage of the Pro part of romelittin by dipeptidase IV. Eur J Biochem 111:49–58Google Scholar
  15. Matsudaira P (1987) Sequence from picomole quantities of roteins electroblotted onto polyvinylidine difluoride membranes. J Biol Chem 262:10035–10038Google Scholar
  16. Sasaki T, Noda H (1973) Studies on silk fibroin of Bombyx mori directly extracted from the silk gland. I. Molecular weight determination in guanidine hydrochloride or urea solutions. Biochim Biophys Acta 310:91–103Google Scholar
  17. Sehnal, F. (1966) Kritisches Studium der Bionomie und Biometrik der in verschiedenen Lebensbedingungen geztichteten Wachsmotte, Galleria mellonella L. (Lepidoptera). Z Wiss Zool 174:53–82Google Scholar
  18. Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K (1987) Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol 105:175–180Google Scholar
  19. Tanaka K, Mori K, Mizuno S (1993) Immunological identification of the major disulfide-linked light component of silk fibroin. J Biochem. 114:1–4Google Scholar
  20. Von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690Google Scholar
  21. Yaffe D, Nudel U, Mayer Y, Neuman S (1985) Highly conserved sequences in the 3′untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res 13:3723–3737Google Scholar
  22. Yamaguchi K, Kikuchi Y, Takagi T, Kikuchi A, Oyama F, Shimura K., Mizuno S (1989) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210:127–139Google Scholar
  23. Žurovec M, Sehnal F, Scheller K, Kumaran AK (1992) Silk gland specific cDNAs from Galleria mellonella L. Insect Biochem Mol Biol 22:55–67Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Michal Žurovec
    • 1
  • Martina Vašková
    • 1
  • Dalibor Kodrík
    • 1
  • František Sehnal
    • 1
  • A. Krishna Kumaran
    • 2
  1. 1.Entomological Institute, Academy of SciencesČeské BudějoviceCzech Republic
  2. 2.Department of BiologyMarquette UniversityMilwaukeeUSA

Personalised recommendations