Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A phylogenetic comparison of mutation spectra

  • 40 Accesses

  • 39 Citations


Spectra of induced mutations resulting in obligate organoauxotrophy are compared at different phylogenetic levels from bacteria to higher plants. It appears that the spectra of mutants concerned with basic cell metabolism are more or less the same in bacteria and fungi. In higher, green plants (an alga and an angiosperm) the spectra are qualitatively different. Mutation frequency in certain pathways is common, while in others no mutants have been found. This lack of recovery of many classes of mutants indicates a reduction, by several orders of magnitude, in either mutability or detectability of the mutants in the majority of the biosynthetic systems.

This is a preview of subscription content, log in to check access.


  1. Baglioni, C.: Correlations between genetics and chemistry of human hemoglobins, p. 405–475. In: J. H. Taylor (ed.), Molecular Genetics, part I. New York: Academic Press 1963.

  2. Bonner, D.: Production of biochemical mutations in Penicillium. Amer. J. Bot. 33, 788–791 (1946).

  3. Boone, D. M., J. F. Stauffer, M. A. Stahmann, and G. W. Keitt: Venturia inaequalis (Cke), Wint, VII Induction of mutants for studies on genetics, nutrition, and pathogenicity. Amer. J. Bot. 43, 199–204 (1956).

  4. Boynton, T. E.: A search for biochemical mutants in the tomato. Rep. Tomato Genet. Coop. 16, 5–7 (1966a).

  5. —: Chlorophyll-deficient mutants in tomato requiring vitamin B1. I. Genetics and physiology. Hereditas 56, 171–199 (1966b).

  6. Burkholder, P. R., and N. H. Giles jr.: Induced biochemical mutations in Bacillus subtilis. Amer. J. Bot. 34, 345–348 (1947).

  7. Demerec, M.: What makes genes mutate? Proc. amer. philos. Soc. 98, 318–322 (1954).

  8. Ebersold, W. T., R. P. Levine, E. E. Levine, and M. A. Olmsted: Linkage maps in Chlamydomonas reinhardi. Genetics 47, 531–543 (1962).

  9. Engel, P. P.: Studies on the induction and inheritance of biochemical mutants in the moss Physcomitrella patens. Genetics 54, 333 (1966).

  10. Eriksson, G., A. Kahn, B. Walles, and D. von Wettstein: Zur makromolekularen Physiologie der Chloroplasten III. Ber. dtsch. bot. Ges. 74, 221–232 (1961).

  11. Feenstra, W. J.: Biochemical genetics of thiamine biosynthesis. In: G. Röbbelen (ed.), Arabidopsis-Research. Rep. Int. Symp. Univ. Göttingen, April 21–24, 1965, p. 113–118 (1965).

  12. Fries, N.: Experimens with different methods of isolating physiological mutants of filamentous fungi. Nature (Lond.) 159, 199 (1947).

  13. Gillham, N. W.: Induction of chromosomal and nonchromosomal mutations in Chalamydomonas reinhardi with N-methyl-N′-nitro-N-nitrosoguanidine. Genetics 52, 529–537, (1965).

  14. Gowans, C. S.: Some genetic investigations on Chlamydomonas eugametos. Z. Vererbungsl. 91, 63–73 (1960).

  15. Holliday, R.: The genetics of Ustilago maydis. Genet. Res. 2, 204–230 (1961).

  16. Langridge, J., and R. D. Brock: A thiamine-requiring mutant of the tomato. Aust. J. biol. Sci. 14, 66–69 (1961).

  17. Lederberg, J.: A view of genetics. Science 131, 269–276 (1960).

  18. Lwoff, A., C. B. VanNeil, F. J. Ryan, and E. L. Tatum: Nomenclature of nutritional types of microorganisms. Cold Spr. Harb. Symp. quant. Biol. 11, 302–303 (1946).

  19. Miller, M. W., E. D. Garber, and P. D. Voth: Nutritionally deficient mutants of Marchantia polymorpha induced by x-rays. Bot. Gaz. Chicago 124, 94–102 (1962).

  20. Nakamura, K., and C. S. Gowans: Genetic control of nicotinic acid metabolism in Chlamydomonas eugametos. Genetics 51, 931–945 (1965).

  21. Perkins, D. D.: Biochemical mutants in the fungus Ustilago maydis. Genetics 34, 607–626 (1949).

  22. Pontecorvo, G.: The genetics of Aspergillus nidulans. Advan. Genet. 5, 141–238 (1953).

  23. Rédei, G. P.: Genetic blocks in the thiamine synthesis of the angiosperm Arabidopsis. Amer. J. Bot. 52, 834–841 (1965).

  24. —: A defective genetic regulation of ribonuclease synthesis in Arabidopsis. Genetics 54, 356 (1966).

  25. —: Genetic estimate of cellular autarky. Experientia (Basel) 23, 584 (1967).

  26. Smith, E. L. and E. Margoliash: Evolution of cytochrome c. Fed. Proc. 23, 1243–1247 (1964).

  27. Tatum, E. L.: X-ray induced mutant strains of E. coli. Proc. nat. Acad. Sci. (Wash.) 31, 215–219 (1945).

  28. —, R. W. Barratt, N. Fries, and D. Bonner: Biochemical mutant strains of Neurospora produced by physical and chemical treatment. Amer. J. Bot. 37, 38–46 (1950).

  29. Vogel, H. J.: Lysine biosynthesis and evolution. p. 25–40. In: V. Bryson and H. J. Vogel (eds.), Evolving genes and proteins. New York: Academic Press 1965.

  30. Walles, B.: Macromolecular physiology of plastids, IV. On amino acid requirements of lethal chloroplast mutants in barley. Hereditas 50, 317–344 (1963).

  31. Westergaard, M.: Chemical mutagenesis in relation to the concept of the gene. Experientia (Basel) 13, 224–234 (1957).

Download references

Author information

Additional information

Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 5167. Approved by the Director.

This work was supported by National Science Foundation Grants GB-3999, GB-4301 and U.S. Atomic Energy Commission Contract AT (11-1)-1609.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, S.L., Rédei, G.P. & Gowans, C.S. A phylogenetic comparison of mutation spectra. Molec. Gen. Genet. 100, 77–83 (1967). https://doi.org/10.1007/BF00425777

Download citation


  • Basic Cell
  • Cell Metabolism
  • Mutation Frequency
  • Green Plant
  • Mutation Spectrum