Molecular and General Genetics MGG

, Volume 200, Issue 3, pp 442–450 | Cite as

Autoregulation of the dnaA gene of Escherichia coli K12

  • Tove Atlung
  • Erik S. Clausen
  • Flemming G. Hansen


Regulation of the dnaA gene, which codes for an essential factor for the initiation of replication from the chromosomal origin, was studied in vivo using transcriptional and translational gene fusions. We found that the dnaA gene was autoregulated over a 30-fold range by the activity of dnaA protein. Expression from the dnaA promoter region of a dnaA″lacZ fusion was inhibited up to sevenfold by surplus dnaA protein and was stimulated up to fivefold upon thermoinactivation of the mutant protein in five different dnaA(Ts) strains. The autoregulation was found to be exerted at transcription from the major dnaA promoter and was eliminated by deletion of sequences around position-65 of this promoter where a 9-bp sequence, which is also found four times in the chromosomal origin, is located.


Escherichia Coli Promoter Region Gene Fusion Mutant Protein Essential Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlung T (1981) Analysis of seven dnaA suppressor loci in Escherichia coli. ICN-UCLA Symp Mol Cell Biol 22:297–314Google Scholar
  2. Atlung T (1984) Allele-specific suppression of dnaA(Ts) mutations by rpoB mutations in Escherichia coli. Mol Gen Genet 197:125–128Google Scholar
  3. Atlung T, Hansen FG (1983) Effect of dnaA and rpoB mutations on attenuation in the trp operon of Escherichia coli. J Bacteriol 156:985–992Google Scholar
  4. Atlung T, Clausen ES, Hansen FG (1984) Autorepression of the dnaA gene of Escherichia coli. In: Hübscher U (ed) Proteins involved in DNA replication. Plenum Press, New York, pp 199–208Google Scholar
  5. Atlung T, Rasmussen KV, Clausen ES, Hansen FG (1985) Role of the dnaA protein in control of replication. In: Schaechter M, Neidhardt FC, Ingraham J, Kjeldgaard NO (eds) Molecular biology of bacterial growth. Jones and Bartlett, Boston, in pressGoogle Scholar
  6. Bachmann BJ (1983) Linkage Map of Escherichia coli K-12, Edition 7. Microbiol Rev 47:180–230Google Scholar
  7. Bolivar F, Rodrigues RL, Green PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113Google Scholar
  8. Braun RE, O'Day K, Wright A (1985) Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40:159–169Google Scholar
  9. Burgers PMJ, Kornberg A, Sakakibara Y (1981) The dnaN gene codes for the β subunit of DNA polymerase III holoenzyme of Escherichia coli. Proc Natl Acad Sci USA 78:5391–5395Google Scholar
  10. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207Google Scholar
  11. Chakraborty T, Yoshinaga K, Lother H, Messer W (1982) Purification of the E. coli dnaA gene product. EMBO J 1:1545–1549Google Scholar
  12. Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156Google Scholar
  13. Clark DJ, Maaløe O (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112Google Scholar
  14. Fuller RS, Kornberg A (1983) Purified dnaA protein in initiation of replication at the Escherichia coli chromosomal origin of replication. Proc Natl Acad Sci USA 80:5817–5821Google Scholar
  15. Fuller RS, Kaguni JM, Kornberg A (1981) Enzymatic replication of the origin of the Escherichia coli chromosome. Proc Natl Acad Sci USA 78:7370–7374Google Scholar
  16. Fuller RS, Funnell BE, Kornberg A (1984) The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38:889–900Google Scholar
  17. Gussin NG, Johnson AD, Pabo CO, Sauer RT (1983) Repressor and cro protein. Structure, function and role in lysogenization. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 93–121Google Scholar
  18. Hansen FG, Rasmussen KV (1977) Regulation of the dnaA product in Escherichia coli. Mol Gen Genet 155:219–225Google Scholar
  19. Hansen FG, von Meyenburg K (1979) Characterization of the dnaA, gyrB and other genes in the dnaA region of the Escherichia coli chromosome on specialized transducing phages λtna. Mol Gen Genet 175:135–144Google Scholar
  20. Hansen FG, Koefoed S, von Meyenburg K, Atlung T (1981) Transcription and translation events in the oriC region of the E. coli chromosome. ICN-UCLA Symp Mol Cell Biol 22:37–55Google Scholar
  21. Hansen EB, Hansen FG, von Meyenburg K (1982) The nucleotide sequence of the dnaA gene and the first part of the dnaA gene of Escherichia coli K-12. Nucleic Acids Res 10:7373–7385Google Scholar
  22. Hansen FG, Hansen EB, Atlung T (1982) The nucleotide sequence of the dnaA gene promoter and the adjacent rpmH gene, coding for the ribosomal protein L34, of Escherichia coli. EMBO J 1:1043–1048Google Scholar
  23. Hansen EB, Atlung T, Hansen FG, Skovgaard O, von Meyenburg K (1984) Fine structure genetic map and complementation analysis of mutations in the dnaA gene Escherichia coli. Mol Gen Genet 156:387–396Google Scholar
  24. Hirota Y, Mordoh J, Jacob F (1970) On the process of cellular division in Escherichia coli III. Thermosensitive mutants of Escherichia coli altered in the process of DNA initiation. J Mol Biol 53:369–387Google Scholar
  25. Kellenberger-Gujer G, Podhajska AJ, Caro L (1978) A cold sensitive dnaA mutant of E. coli which overinitiates chromosome replication at low temperature. Mol Gen Genet 162:9–16Google Scholar
  26. Kimura M, Yura T, Nagata T (1980) Isolation and characterination of Escherichia coli dnaA amber mutants. J Bacteriol 144:649–655Google Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  28. Lark KG (1972) Evidence for direct involvement of RNA in the initiation of DNA replication in E. coli 15T-. J Mol Biol 64:47–60Google Scholar
  29. Lother H, Bukh H-J, Morelli G, Heimann B, Chakraborty T, Messer W (1981) Genes, transcriptional units and functional sites in and around the E. coli replication origin. ICN-UCLA Symp Mol Cell Biol 22:57–77Google Scholar
  30. Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA injection. J Mol Biol 53:159–162Google Scholar
  31. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  32. Marinus MG, Morris NR (1974) Biological function for the 6-methyladenine residues in the DNA of Escherichia coli K-12. J Mol Biol 85:309–322Google Scholar
  33. Marsh RC, Worcel A (1977) A DNA fragment containing the origin of replication of the Escherichia coli chromosome. Proc Natl Acad Sci USA 74:2720–2724Google Scholar
  34. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560Google Scholar
  35. Meyenburg K von, Hansen FG, Riise E, Bergmans HEN, Meijer M, Messer W (1979) Origin of replication, oriC, of the Escherichia coli K12 chromosome: Genetic mapping and minichromosome replication. Cold Spring Harbor Symp Quant Biol 43:121–128Google Scholar
  36. Meyenburg K von, Jørgensen BB, Nielsen J, Hansen FG (1982) Promoters of the atp operon coding for the membrane bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations. Mol Gen Genet 188:240–248Google Scholar
  37. Meyenburg K von, Hansen FG, Atlung T, Boe L, Clausen IG, van Deurs B, Hansen EB, Jørgensen BB, Jørgensen F, Koppes L, Michelsen O, Nielsen J, Pedersen PE, Rasmussen KV, Riise E, Skovgaard O (1985) Facets of the chromosomal origin of replication, oriC, of Escherichia coli. In: Schaechter M, Neidhardt FC, Ingraham J, Kjeldgaard NO (eds) Molecular biology of bacterial growth. Jones and Bartlett, Boston, in pressGoogle Scholar
  38. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  39. Neidhardt FC, Bloch PL, Pedersen S, Reeh SV (1977) Chemical measurement of steady state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol 129:378–387Google Scholar
  40. Ohmori H, Kimura M, Nagata T, Sakakibara Y (1984) Structural analysis of the dnaA and dnaN genes of Escherichia coli. Gene 28:159–170Google Scholar
  41. Pedersen S, Reeh SV, Watson RJ, Friesen JD, Fiil NP (1976) Analysis of the proteins synthesized in ultraviolet light-irradiated Escherichia coli following infection with the bacteriophages λdrifD18 and λdfus-3. Mol Gen Genet 144:339–343Google Scholar
  42. Polaczek P, Ciesla Z (1984) Effect of altered efficiency of the RNA I and RNA II promoters on in vivo replication of ColE1-like plasmids in Escherichia coli. Mol Gen Genet 194:227–231Google Scholar
  43. Remaut E, Stanssens P, Fiers W (1981) Plammid vectors for high efficiency expression by the pL promotor of coliphage lambda. Gene 15:81–93Google Scholar
  44. Sakakibara Y, Tsukano H, Sako T (1981) Organization and transcription of the dnaA and dnaN genes of Escherichia coli. Gene 13:47–55Google Scholar
  45. Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137:692–693Google Scholar
  46. Schaus N, O'Day K, Peters W, Wright A (1981a) Isolation and characterization of amber mutations in gene dnaA of Escherichia coli K-12. J Bacteriol 145:904–913Google Scholar
  47. Schaus N, O'Day K, Wright A (1981b) Suppression of amber mutations in the dnaA gene of Escherichia coli K-12 by secondary mutations in rpoB. ICN-UCLA Symp Mol Cell Biol 22:315–323Google Scholar
  48. Schultz J, Silhavy TJ, Berman ML, Fiil NP, Emr SD (1982) A previously unidentified gene in the spc operon of Escherichia coli K12 specifies a component of the protein export machinery. Cell 31:227–235Google Scholar
  49. Siebenlist U, Simpson RB, Gilbert W (1980) Escherichia coli RNA polymerase interacts homologously with two different promoters. Cell 20:269–281Google Scholar
  50. Stoker NG, Fairweather NF, Spratt BG (1982) Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene 18:335–341Google Scholar
  51. Stüber D, Bujard H (1981) Organization of transcriptional signals in plasmids pBR322 and pACYC184. Proc Natl Acad Sci USA 78:167–171Google Scholar
  52. Stüber D, Bujard H (1982) Transcription from efficient promoters can interfere with plasmid replication and diminish expression of plasmid specified genes. EMBO J 1:1399–1404Google Scholar
  53. Sutcliffe JG (1979) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp Quant Biol 43:77–90Google Scholar
  54. Tinocho I, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature (New Biology) 246:40–41Google Scholar
  55. Tippe-Schindler R, Zahn G, Messer W (1979) Control of the initiation of DNA replication in Escherichia coli. I. Negative control of initiation. Mol Gen Genet 168:185–195Google Scholar
  56. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268Google Scholar
  57. Zyskind JW, Harding NE, Takeda Y, Cleary JM, Smith DW (1981) The DNA replication origin of the Enterobacteriaceae. ICN-UCLA Symp Mol Cell Biol 22:13–25Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Tove Atlung
    • 1
    • 2
  • Erik S. Clausen
    • 1
  • Flemming G. Hansen
    • 2
  1. 1.University Institute of MicrobiologyUniversity of CopenhagenCopenhagen KDenmark
  2. 2.Department of MicrobiologyThe Technical University of DenmarkLyngby-CopenhagenDenmark

Personalised recommendations