Archives of Microbiology

, Volume 149, Issue 5, pp 447–450 | Cite as

Characterization of Desulfovibrio fructosovorans sp. nov.

  • B. Ollivier
  • R. Cord-Ruwisch
  • E. C. Hatchikian
  • J. L. Garcia
Original Papers

Abstract

Desulfovibrio strain JJ isolated from estuarine sediment differed from all other described Desulfovibrio species by the ability to degrade fructose. The oxidation was incomplete, leading to acetate production. Fructose, malate and fumarate were fermented mainly to succinate and acetate in the absence of an external electron acceptor. The pH and temperature optima for growth were 7.0 and 35° C respectively. Strain JJ was motile by means of a single polar flagellum. The DNA base composition was 64.13% G+C. Cytochrome c3 and desulfoviridin were present. These characteristics established the isolate as a new species of the genus Desulfovibrio, and the name Desulfovibrio fructosovorans is proposed.

Key words

Sulfate reduction Fermentation Fructose Desulfovibrio fructosovorans sp. nov. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Fox GE, Magrum LJ, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296Google Scholar
  2. Braun M, Stolp H (1985) Degradation of methanol by a sulfate reducing bacterium. Arch Microbiol 142:77–80Google Scholar
  3. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bactria. J Microbiol Meth 4:33–36Google Scholar
  4. Cord-Ruwisch R, Ollivier B, Garcia JL (1986) Fructose degradation by Desulfovibrio sp. in pure culture and in coculture with Methanospirillum hungatei. Curr Microbiol 13:285–289Google Scholar
  5. Hatchikian EC (1972) Mécanismes d'oxydo-réduction chez les bactéries sulfato-réductrices. Thèse doctorat d'état, Université d'Aix-Marseille II, FranceGoogle Scholar
  6. Hatchikian EC, Le Gall J (1970a) Étude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfato-réductrices. I. Étude de l'oxydation enzymatique du fumarate en acétate. Ann Inst Pasteur 118:125–142Google Scholar
  7. Hatchikian EC, Le Gall J (1970b) Étude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfato-réductrices. II. Transport des électrons, accepteurs finaux. Ann Inst Pasteur 118:288–301Google Scholar
  8. Hungate RE (1969) A roll tube method for the cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3 B. Academic Press, New York, pp 117–132Google Scholar
  9. Jones WJ, Guyot JP, Wolfe RS (1984) Methanogenesis from sucrose by defined immobilized consortia. Appl Environ Microbiol 47:1–6Google Scholar
  10. Jorgensen BB, Frenchel T (1974) The sulfur cycle of a marine sediment model system. Marine Biol 24:189–201Google Scholar
  11. Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208Google Scholar
  12. Lee JP, Peck HD Jr (1971) Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem Biophys Res Commun 45:583–589Google Scholar
  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  14. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:2317–2324Google Scholar
  15. Miller JDA, Wakerley DS (1966) Growth of sulphate-reducing bacteria by fumarate dismutation. J Gen Microbiol 43:101–107Google Scholar
  16. Miller JDA, Neuman PM, Elford L, Wakerley DS (1970) Malate dismutation by Desulfovibrio. Arch Microbiol 71:214–219Google Scholar
  17. Möller B, Obmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396Google Scholar
  18. Nanninga HJ, Gottschal JC (1986) Isolation of a sulfate-reducing bacterium growing with methanol. FEMS Microbiol Ecol 38:125–130Google Scholar
  19. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring shape, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288Google Scholar
  20. Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 926–940Google Scholar
  21. Postgate JR (1956) Cytochrome c 3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol 14:545–572Google Scholar
  22. Postgate JR (1959) A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183:481–482Google Scholar
  23. Postgate JR (1979) The sulfate reducing bacteria. Cambridge University Press, LondonGoogle Scholar
  24. Stams AJM, Hansen TA, Skyring GW (1985) Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol Ecol 31:11–15Google Scholar
  25. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral thesis, Univ Göttingen, FRGGoogle Scholar
  26. Widdel F, Pfennig N (1984) Dissimilatory sulfate-or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, 9th edn. Williams and Wilkins, Baltimore, pp 663–679Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. Ollivier
    • 1
  • R. Cord-Ruwisch
    • 2
  • E. C. Hatchikian
    • 3
  • J. L. Garcia
    • 2
  1. 1.Laboratoire de Microbiologie ORSTOMENSUTDakarSénegal
  2. 2.Laboratoire de Microbiologie ORSTOMUniversité de ProvenceMarseille Cédex 3France
  3. 3.Laboratoire de Chimie BactérienneCNRSMarseille Cédex 9France

Personalised recommendations