Advertisement

Molecular and General Genetics MGG

, Volume 175, Issue 2, pp 175–179 | Cite as

A hex mutant of Haemophilus influenzae

  • Hasan Bagci
  • Johan H. Stuy
Article

Summary

A mutant of Haemophilus influenzae which does not discriminate between low efficiency (LE) and high efficiency (HE) markers has been isolated. The mutant does not differ wild type in its sensitivity to ultraviolet radiation, methyl methanesulfonate (MMS) mitomycin C, and nitrous acid. Spontaneous mutation frequencies for three loci studied are 10-to 30-fold higher in the mutant than in the wild type strain. Low- and high-efficiency transforming markers are equally UV-resistant when assayed on this mutant. This mutant is thus similar to the hex mutant of Streptococcus pneumoniae.

Keywords

Radiation Methyl Nitrous Acid Type Strain Wild Type Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, H.E., Leidy, G.: Induction of streptomycin resistance in sensitive Haemophilus influenzae extracts containing deoxyribonucleic acid from resistant Haemophilus influenzae. J. Exp. Med. 97, 17–31 (1953)Google Scholar
  2. Barnhart, B.J., Dox, S.H.: Radiation-sensitive and radiation-resistant mutants of Haemophilus influenzae. J. Bacteriol. 96, 280–282 (1968)Google Scholar
  3. Bresler, S.E., Kreneva, R.A., Kushev, V.V.: Correction of molecular heterozygotes in the course of transformation. Mol. Gen. Genet. 102, 257–268 (1968)Google Scholar
  4. Bron, S., Venema, G.: Ultraviolet inactivation and excision repair in Bacillus subtilis. I. Construction and characterization of a transformable eight fold auxotrophic and two ultraviolet sensitive derivatives. Mutation Res. 15, 1–10 (1972a)Google Scholar
  5. Bron, S., Venema, G.: Ultraviolet inactivation and excision repair in Bacillus subtilis. Mutation Research 15, 11–22 (1972b)Google Scholar
  6. Davidoff-Abelson, R., Dubneau, D.: Conditions affecting the isolation from transformed cells of Bacillus subtilis of high molecular weight single-stranded deoxyribonucleic acid of donor origin. J. Bacteriol. 116, 146–153 (1973)Google Scholar
  7. Day, R.S., Rupert, C.S.: Ultraviolet sensitivity of Haemophilus influenzae transforming DNA. I. Effect of genetic mismatch and target size. Mutation Res. 11, 293–311 (1971a)Google Scholar
  8. Day, R.S. III, Rupert, C.S.: Ultraviolet sensitivity of Haemophilus influenzae transforming DNA. I. Effect of genetic mismatch and target size. Mutation Res. 11, 293–311 (1971b)Google Scholar
  9. Day, R.S., III, Rupert, C.S.: Ultraviolet sensitivity of Haemophilus influenzae transforming DNA. II. A reextraction study of integration and repair. Mutation Res. 11, 313–326 (1971b)Google Scholar
  10. Ephrussi-Taylor, H., Sicard, A.M., Kamen, R.: Genetic recombination in DNA-induced transformation of pneumococcus. I. The problem of relative efficiency of transforming factors. Genetics 51, 455–475 (1965)Google Scholar
  11. Ephrussi-Taylor, H., Gray, T.C.: Genetic studies of recombining DNA in pneumococcal transformation. J. Gen. Physiol. part 2, 49, 211–231 (1966)Google Scholar
  12. Fox, S.M., Allen, M.K.: On the mechanism of deoxyribonucleate integration in pneumococcal transformation. Proc. Natl. Acad. Sci. (US) 52, 412–419 (1964)Google Scholar
  13. Guild, W.R., Shoemaker, N.B.: Intracellular competition for a mismatch recognition system and marker specific rescue of transforming DNA from inactivation by ultraviolet irradiation. Mol. Gen. Genet. 128, 290–300 (1974)Google Scholar
  14. Harm, H., Rupert, C.S.: Infection of transformable cells of Haemophilus influenzae by bacteriophage and bacteriophage DNA. Z. Vererbungslehre 94, 336–348 (1963)Google Scholar
  15. Lacks, S.: Molecular fate of DNA in genetic transformation of pneumococcus. J. Mol. Biol. 5, 119–131 (1962)Google Scholar
  16. Lacks, S.: Integration efficiency and genetic recombination in pneumococcal transformation. Genetics 53, 207–235 (1966)Google Scholar
  17. Lacks, S.: Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J. Bacteriol. 101, 373–383 (1970)Google Scholar
  18. Litman, R.M.: Genetic and chemical alteration in the transforming DNA of pneumococcus caused by ultraviolet light and by nitrous acid. J. Chimie. Phys. 58, 997–1004 (1961)Google Scholar
  19. Louarn, J., Sicard, A.M.: Transmission of genetic information in Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 30, 683–689 (1968)Google Scholar
  20. Morse, H.G., Lerman, L.S.: A genetic analysis by transformation of a group of uracil-requiring mutants of Diplococcus pneumoniae. Genetics 61, 41–60 (1969)Google Scholar
  21. Notani, N., Goodgal, S.H.: On the nature of recombinants found during transformation in Haemophilus influenzae. J. Gen. Physiol. 49, part 2, no. 6, 197–209 (1966)Google Scholar
  22. Piechowska, M., and Fox, S.M.: Fate of transforming deoxyribonucleate in Bacillus subtilis. J. Bacteriol. 108, 680–689 (1971)Google Scholar
  23. Pittman, M.: Variation and type specificity in the bacterial species Haemophilus influenzae. J. Exp. Med. 53, 471–491 (1931)Google Scholar
  24. Roger, M.: Evidence for conversion of heteroduplex transforming DNAs to homoduplexes by recipient pneumococcal cells. Proc. Natl. Acad. Sci. (US) 69, 466–470 (1972)Google Scholar
  25. Shoemaker, N.B., Guild, W.R.: Distruction of low efficiency markers is a slow process occurring at a heteroduplex stage of transformation. Mol. Gen. Genet. 128, 283–290 (1974)Google Scholar
  26. Sicard, A.M., Ephrussi-Taylor, H.: Genetic recombination in DNA induced transformation of pneumococcus. Genetics 52, 1207–1227 (1965)Google Scholar
  27. Stuy, J.H.: Transformability of Haemophilus influenzae. J. Gen. Microbiol. 29, 537–549 (1962)Google Scholar
  28. Stuy, J.H.: Phage resistance in Haemophilus influenzae. Biochem. Biophys. Res. Commun. 33, 683–687 (1968)Google Scholar
  29. Stuy, J.H.: Prophage mapping by transformation. Virology 38, 567–572, (1969)Google Scholar
  30. Stuy, J.H.: Acid-soluble breakdown of homologous DNA adsorbed by Haemophilus influenzae: its biological significance. J. Bacteriol. 120, 917–922 (1974)Google Scholar
  31. Stuy, J.H.: Fate of transforming bacteriophage HP1 deoxyribonucleic acid in Haemophilus influenzae lysogens. J. Bacteriol. 122, 1038–1044 (1975)Google Scholar
  32. Tiraby, G., Fox, S.M.: Marker discrimination in transformation and mutation of pneumococcus. Proc. Natl. Acad. Sci. (USA) 70, 3541–3545 (1973)Google Scholar
  33. Tiraby, G., Sicard, M.A.: Integration efficiencies of spontaneous mutant alleles of amiA locus in pneumococcal transformation. J. Bacteriol. 116, 1130–1135 (1973a)Google Scholar
  34. Tiraby, G., Sicard, M.A.: Integration efficiency in DNA induced transformation of pneumococcus. II. Genetic studies of mutant integrating all the markers with a high efficiency. Genetics 75, 35–48 (1973b)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hasan Bagci
    • 1
  • Johan H. Stuy
    • 1
  1. 1.Department of Biological SciencesFlorida State UniversityTallahasseeUSA

Personalised recommendations