Advertisement

Molecular and General Genetics MGG

, Volume 175, Issue 2, pp 159–174 | Cite as

Physical characterisation of the “Rac prophage” in E. coli K12

  • Kim Kaiser
  • Noreen E. Murray
Article

Summary

We confirm the hypothesis of Low (1973) that many E. coli K 12 strains contain a prophage (the Rac prophage) located a few minutes clockwise of the trp operon on the genetic map. We have used restriction endonucleases and 32P-labelled probes to construct a physical map of this prophage. Some E. coli K 12 strains, including AB1157, have lost the entire prophage, apparently by a specific deletion. This is consistent with prophage excision by site-specific recombination.

λ reverse (λrev) phages (Zissler et al., 1971) are recombination proficient derivatives of phage λ in which the phage recombination functions have been replaced by analogous functions (RecE) derived from the host chromosome (Gottesman et al., 1974; Gillen et al., 1977). Our data support the origin of λrev phages by recombination between λ and the Rac prophage following excision of the Rac prophage from the E. coli chromosome.

Important experimental data are included in the Figure legends.

Keywords

Experimental Data Recombination Restriction Endonuclease Figure Legend Physical Characterisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleyard, R.K.: Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 29, 440–452 (1954)Google Scholar
  2. Appleyard, R.K., McGregor, J.F., Baird, K.M.: Mutations to extended host range and the occurrence of phenotype mixing in the temperate coliphage λ. Virology 2, 565–574 (1956)Google Scholar
  3. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K 12. Bacteriol. Rev. 40, 116–167 (1976)Google Scholar
  4. Bertani, L.E.: Abortive induction of bacteriophage P2. Virology 36, 87–103 (1968)Google Scholar
  5. Bolivar, F.: Construction and Characterisation of New Cloning Vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant DNA molecules. Gene 4, 121–136 (1978)Google Scholar
  6. Campbell, A.: Sensitive mutants of bacteriophage λ. Virology 14, 22–32 (1961)Google Scholar
  7. Clark, A.J.: Recombination deficient mutants of E. coli and other bacteria. Annu. Rev. Genet. 7, 67–86 (1973)Google Scholar
  8. Clarke, L., Carbon, J.: A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9, 91–99 (1976)Google Scholar
  9. Court, D., Sato, K.: Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology 39, 348–352 (1969)Google Scholar
  10. Cowie, B., McCarthy, B.J.: Homology between bacteriophage λ DNA and E. coli DNA. Proc. Natl. Acad. Sci. U.S.A. 50, 537–543 (1963)Google Scholar
  11. Davis, R.W., Simon, M., Davidson, M.: Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. In: Methods in enzymology (Grossman, L., Moldave, K., eds.), Vol. 21, pp. 413–428. New York: Academic Press 1971Google Scholar
  12. Denhardt, D.T.: A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23, 641–646 (1966)Google Scholar
  13. Diaz, R., Barnsley, P., Pritchard, R.H.: Location and characterisation of a new replication origin in the E. coli K 12 chromosome. Mol. gen. Genet. (1979)Google Scholar
  14. Diaz, R., Pritchard, R.H.: Cloning of replication origins from the E. coli K 12 chromosome. Nature 275, 561–564 (1978)Google Scholar
  15. Fiandt, M., Hradecna, A., Lozeron, H.A., Szybalski, W.: Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphage lambda and phi 80. In: The bacteriophage lambda (A.D. Hershey, ed.), pp. 329–354. New York: Cold Spring Harbor Laboratories 1971Google Scholar
  16. Gillen, J.R., Karu, A.E., Nagaishi, H., Clark, A.J.: Characterisation of the deoxyribonuclease determined by lambda reverse as exonuclease VIII of Escherichi coli. J. Mol. Biol. 113, 27–41 (1977)Google Scholar
  17. Goldberg, A.R., Howe, M.: New mutations in the S cistron of bacteriophage λ affecting host cell lysis. Virology 38, 200–202 (1969)Google Scholar
  18. Gottesman, M.M., gottesman, M.E., Gottesman, S., Gellert, M.: Characterisation of bacteriophage λ reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J. Mol. Biol. 88, 471–487 (1974)Google Scholar
  19. Green, M.H.: Complementarity between lambda (λ) phage and Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 50, 1177–1184 (1963)Google Scholar
  20. Grunstein, M., Hogness, D.S.: Colony hybridisation: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. U.S.A. 72, 3961–3965 (1975)Google Scholar
  21. Guerry, P., LeBlanc, D.J., Falkow, S.: General method for the isolation of plasmid deoxyribonucleic acid. J. Bacteriol. 116, 1064–1066 (1973)Google Scholar
  22. Henderson, D., Weil, J.: The nature and origin of a class of essential gene substitutions in bacteriophage λ. Virology 67, 124–135 (1975)Google Scholar
  23. Humphreys, G.O., Willshaw, G.A., Anderson, E.S.: A simple method for the preparation of large quantities of pure plasmid DNA. Biochim. Biophys. Acta 383, 457–463 (1975)Google Scholar
  24. Jacob, F., Wollman, E.L.: Étude génétique d'un bactériophage tempéré d'Escherichia coli. Ann. Inst. Pasteur Lille 87, 653–673 (1954)Google Scholar
  25. Katz, L., Kingsbury, D.T., Helinski, D.R.: Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J. Bacteriol. 114, 577–591 (1973)Google Scholar
  26. Kelley, W.S., Chalmers, K., Murray, N.E.: Isolation and characterisation of a λpolA transducing phage. Proc. Natl. Acad. Sci. U.S.A. 74, 5632–5636 (1977)Google Scholar
  27. Kushner, S., Nagaishi, H., Clark, A.J.: Isolation of exonuclease VIII: the enzyme associated with the sbcA indirect suppressor. Proc. Natl. Acad. Sci. U.S.A. 71, 3593–3597 (1974)Google Scholar
  28. Lederberg, E.M.: Lysogenicity in E. coli K12. Genetics 36, 560 (1951)Google Scholar
  29. Lederberg, E.M., Cohen, S.N.: Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J. Bacteriol. 119, 1072–1074 (1974)Google Scholar
  30. Lloyd, R.G.: The Segregation of the SbcA and Rae phenotype in an Escherichia coli recB - mutant. Mol. Gen. Genet. 134, 249–259 (1974)Google Scholar
  31. Lloyd, R.G., Barbour, S.D.: The genetic location of the sbcA gene of Escherichia coli. Mol. Gen. Genet. 134, 157–171 (1974)Google Scholar
  32. Low, K.B.: Escherichia coli K 12 Fpprime factors, old and new. Bacteriol. Rev. 36, 587–607 (1972)Google Scholar
  33. Low, K.B.: Restoration by the rac locus of recombinant forming ability in recB - and recC - merozygotes of Escherichia coli K 12. Mol. Gen. Genet. 122, 119–130 (1973)Google Scholar
  34. Maniatis, T., Jeffrey, A., Kleid, D.G.: Nucleotide sequence of the rightward operator of phage λ. Proc. Natl. Acad. Sci. U.S.A. 72, 1184–1188 (1975)Google Scholar
  35. Murray, N.E., Brammar, W.J., Murray, K.: Lambdoid phages that simplify the recovery of in vitro recombinants. Mol. Gen. Genet. 150, 53–61 (1977)Google Scholar
  36. Murray, N.E., Manduca de Ritis, P., Foster, L.A.: DNA targets for the Escherichia coli K restriction system analysed genetically in recombinants between phages phi 80 and lambda. Mol. Gen. Genet. 120, 261–281 (1973)Google Scholar
  37. Philippsen, P., Davis, R.W.: Cloning of the yeast ribosomal DNA repeat unit in SstI and HindIII lambda vectors using genetic and physical size selections. J. Mol. Biol. 123, 371–386 (1978)Google Scholar
  38. Sato, K., Campbell, A.: Specialised transduction of galactose by lambda phage from a deletion lysogen. Virology 41, 474–487 (1970)Google Scholar
  39. Simmon, V.F., Lederberg, S.: Degradation of bacteriophage λ deoxyribonucleic acid after restriction by Escherichia coli K 12. J. Bacteriol. 112, 116–169 (1972)Google Scholar
  40. Simon, M.N., Davis, R.W., Davidson, N.: Heteroduplexes of DNA molecules of lambdoid phages: physical mapping of their base sequence relationships by electron microscopy. In: The bacteriophage lambda (A.D. Hershey, ed.), pp. 455–475. New York: Cold Spring Harbor Laboratories 1971Google Scholar
  41. Southern, E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–518 (1975)Google Scholar
  42. Strathern, A., Herskowitz, I.: Defective prophage in Escherichia coli K 12 strains. Virology 67, 136–143 (1975)Google Scholar
  43. Tabak, H.I., Flavell, R.A.: A method for the recovery of DNA from agarose gels. Nucleic Acids Res. 5, 2321–2332 (1978)Google Scholar
  44. Templin, A., Kushner, S.R., Clark, A.J.: Genetic analysis of mutations indirectly suppressing recB and recC mutations. Genetics 72, 205–215 (1972)Google Scholar
  45. Tsygankov, Y.D., Karapetian, A.T., Krylov, V.N.: New lambdoid phages of Escherichia coli. II. Comparison of some genetic characteristics with phage λ. Genetika 12, 112–117 (1976)Google Scholar
  46. Weigle, J.: Assembly of phage lambda in vitro. Proc. Natl. Acad. Sci. U.S.A. 55, 1462–1466 (1966)Google Scholar
  47. Wilson, G.G., Tanyashin, V.I., Murray, N.E.: Molecular cloning of fragments of bacteriophage T4 DNA. Mol. Gen. Genet. 156, 203–214 (1977)Google Scholar
  48. Zissler, J., Signer, E.R., Schaefer, F.: The role of recombination in growth of bacteriophage lambda. In: The bacteriophage lambda (A.D. Hershey, ed.), pp. 455–475, New York: Cold Spring Harbor Laboratories 1971Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Kim Kaiser
    • 1
  • Noreen E. Murray
    • 1
  1. 1.Department of Molecular BiologyUniversity of EdinburghEdinburghScotland

Personalised recommendations