Molecular and General Genetics MGG

, Volume 179, Issue 2, pp 341–348 | Cite as

A second purine nucleoside phosphorylase in Escherichia coli K-12

II. Properties of xanthosine phosphorylase and its induction by xanthosine
  • K. Hammer-Jespersen
  • R. S. Buxton
  • T. D. Hansen
Article

Summary

The presence of a second purine nucleoside phosphorylase in wild-type strains of E. coli K-12 after growth on xanthosine has been demonstrated. Like other purine nucleoside phosphorylases it is able to carry out both phosphorylosis and synthesis of purine deoxy- and ribonucleosides whilst pyrimidine nucleosides cannot act as substrates. In contrast to the well characterised purine nucleoside phosphorylase of E. coli K-12 (encoded by the deoD gene) this new enzyme could act on xanthosine and is hence called xanthosine phosphorylase. Studies of its substrate specificity showed that xanthosine phosphorylase, like the mammalian purine nucleoside phosphorylases, has no activity towards adenine and the corresponding nucleosides. Determinations of Km and gel filtration behaviour was carried out on crude dialysed extracts. The presence of xanthosine phosphorylase enables E. coli to grow on xanthosine as carbon source. Xanthosine was the only compound found which induced xanthosine phosphorylase. No other known nucleoside catabolising enzyme was induced by xanthosine. The implications of non-linear induction kinetics of xanthosine phosphorylase is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.: The gel filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595–606 (1965)Google Scholar
  2. Buxton, R.S., Albrechtsen, H., Hammer-Jespersen, K.: Overlapping transcriptional units in the deo operon of Escherichia coli K-12. Evidence from phage Mu-1 insertion mutants. J. Mol. Biol. 114, 287–300 (1977)Google Scholar
  3. Buxton, R.S., Hammer-Jespersen, K., Hansen, T.D.: Insertion of bacteriophage lambda into the deo operon of Escherichia coli K-12 and isolation of plaque-forming λdeo + transducing bacteriophages. J. Bacteriol. 136, 668–681 (1978)Google Scholar
  4. Buxton, R.S., Hammer-Jespersen, K., Valentin-Hansen, P.: A second purine nucleoside phosphorylase in Escherichia coli K-12. I. Mutants altered in the regulation of the gene specifying xanthosine phosphorylase. Mol. Gen. Genet. 179, 331–340 (1980)Google Scholar
  5. Cleland, W.W.: The statistical analysis of enzyme kinetic data. Adv. Enzymol. 29, 1–32 (1967)Google Scholar
  6. Glantz, M.D., Lewis, A.S.: Purine nucleoside phosphorylase from rabbit liver. In: Methods in enzymology (P.A. Hoffee and M.E. Jones, eds.) vol. 51, pp. 524–530, London: Academic Press 1978Google Scholar
  7. Hammer-Jespersen, K., Munch-Petersen, A.: Phosphodeoxyribomutase from Escherichia coli. Purification and some properties. Eur. J. Biochem. 17, 397–407 (1970)Google Scholar
  8. Hammer-Jespersen, K., Munch-Petersen, A., Nygaard, P., Schwartz, M.: Induction of enzymes involved in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K-12. Eur. J. Biochem. 19, 533–538 (1971)Google Scholar
  9. Holguin-Hueso, J., Cardinaud, R.: Enzymic synthesis of 9- and 7-(2′-β-D-deoxyribosyl)xanthine. FEBS Lett. 20, 171–173 (1972)Google Scholar
  10. Jensen, K.F.: Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase. Biochim. Biophys. Acta 525, 346–356 (1978)Google Scholar
  11. Jensen, K.F., Leer, J.C., Nygaard, P.: Thymine utilisation in Escherichia coli K-12: on the role of deoxyribose-1-phosphate and thymidine phosphorylase. Eur. J Biochem. 40, 345–354 (1973)Google Scholar
  12. Jensen, K.F., Nygaard, P.: Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur. J. Biochem. 51, 253–265 (1975)Google Scholar
  13. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  14. Munch-Petersen, A., Mygind, B.: Nucleoside transport systems in Escherichia coli K-12: specificity and regulation. J. Cell. Physiol. 89, 551–560 (1976)Google Scholar
  15. Munch-Petersen, A., Nygaard, P., Hammer-Jespersen, K., Fiil, N.: Mutants constitutive for nucleoside-catabolizing enzymes in Escherichia coli K-12. Isolation, characterization and mapping. Eur. J. Biochem. 27, 208–215 (1972)Google Scholar
  16. Nygaard, P.: Adenosine deaminase from Escherichia coli. In: Methods in enzymology (P.A. Hoffec and M.E. Jones, eds.), vol. 51, pp. 508–512. London: Academic Press 1978Google Scholar
  17. Park, J.T., Johnson, M.J.: Submicrodetermination of glucose. J. Biol. Chem. 181, 149–151 (1949)Google Scholar
  18. Parks, R.E., Agarwall, R.P.: Purine nucleoside phosphorylase. In: The enzymes (P.D. Boyer, ed.), 3rd ed., Vol. 7, pp. 483–514. London: Academic Press 1972Google Scholar
  19. Saslaw, L.D., Waravdekar, V.S.: The thiobarbituric acid method for deoxyribonucleosides. In: Methods in enzymology (L. Grossman and K. Moldave, eds.), vol. 12A, pp. 108–113. London: Academic Press 1967Google Scholar
  20. Senesi, S., Falcone, G., Mura, U., Sgarrella, F., Ipata, P.L.: A specific adenosine phosphorylase distinct from purine nucleoside phosphorylase. FEBS Lett. 64, 353–357 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. Hammer-Jespersen
    • 1
  • R. S. Buxton
    • 2
  • T. D. Hansen
    • 1
  1. 1.Enzyme DivisionUniversity Institute of Biological Chemistry BCopenhagen KDenmark
  2. 2.Division of MicrobiologyNational Institute for Medical ResearchLondonEngland

Personalised recommendations