Archiv für Mikrobiologie

, Volume 86, Issue 3, pp 221–224 | Cite as

Metabolism of organophosphorus insecticides

XIII. Degradation of malathion by Rhizobium spp.
  • I. Y. Mostafa
  • I. M. I. Fakhr
  • M. R. E. Bahig
  • Y. A. El-Zawahry


The metabolism of 32P-Malathion in Rhizobium leguminosarum and Rhizobium trifolii has been investigated. In addition to inorganic phosphates and/or thiophosphates, 5 hydrolytic metabolites could be identified. The carboxylic acid derivatives constituted the major portion (35–40% of the total metabolites output) suggesting the presence of powerful carboxyesterases in both Rhizobium spp. Malaoxon could not be detected in the media of both organisms.


Inorganic Phosphate Carboxylic Acid Rhizobium Acid Derivative Major Portion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bigley, W. S., Plapp, F. W., Jr.: Metabolism of malathion and malaoxon by the Mosquito, Culex tarsalis coq. J. Insect Physiol. 8, 545–557 (1962).Google Scholar
  2. Bourke, J. B., Broderick, E. J., Hackler, L. R., Lippold, P. C.: Comparative metabolism of malathion C-14 in plants and animals. J. Agr. Food Chem. 16, 585–589 (1968).Google Scholar
  3. Hanes, C. S., Isherwood, F. A.: Separation of the phosphoric esters on the filter paper chromatogram. Nature (Lond.) 164, 1107–1112 (1949).Google Scholar
  4. Koivistoinen, P., Aalto, H.: Malathion residues and their fate in cereals. Nuclear Techniques for Studying Pesticide Residue Problems, STl/Pub/252, IAEA, Vienna 1970.Google Scholar
  5. Krueger, H. R., O'Brien, R. D.: Relation between metabolism and differential toxicity of malathion in insects and mice. J. Econ. Entomol. 52, 1063–1067 (1959).Google Scholar
  6. March, R. B., Fukuto, T. R., Metcalf, R. L., Maxon, M. G.: Fate of P32-labelled Malathion in the laying hen, white mouse and american cockroach. J. Econ. Entomol. 49, 185–195 (1956).Google Scholar
  7. Matsumura, F., Boush, G.: Malathion degradation by Trichoderma Viride and a Pseudomonas species. Science 153, 1278–1280 (1966).Google Scholar
  8. Matsumura, F., Dauterman, W. C.: Effect of malathion analogues on a malathion resistant housefly strain which possesses a detoxication enzyme, carboxyesterase. Nature (Lond.) 202, 1356–1358 (1964).Google Scholar
  9. Matsumura, F., Voss, G.: Mechanism of malathion and parathion resistance in the two-spotted spider mite, tetrryehus urtiese. J. Econ. Entomol. 57, 911–917 (1964).Google Scholar
  10. Matsumura, F., Voss, G.: Properties of partially purified malathion carboxyesterase of the two-spotted spider mite. J. Insect Physiol. 11, 147–160 (1965).Google Scholar
  11. Menzer, R. E., Dauterman, W. C.: Metabolism of some organophosphorus insecticides. J. Agr. Food Chem. 18, 1031–1037 (1970).Google Scholar
  12. Plapp, F. W., Casida, J. E.: Ion exchange chromatography for hydrolysis products of organophosphate insecticides. Analyt. Chem. 30, 1622–1624 (1958).Google Scholar
  13. Seume, F. W., O'Brien, R. D.: Metabolism of Malathion by Rat tissue preparations and its modification by EPN. J. Agr. Food Chem. 8, 36–41 (1960).Google Scholar
  14. Wilson, P. W., Knight, S. G.: Experiments in bacterial physiology Burgess Publishing Co., Minneapolis 15, Minnesota 1952.Google Scholar
  15. Zayed, S. M. A. D., Fakhr, I. M. I., Bahig, M. R. E.: Degradation of P32-Malathion in the adult larva of the cotton leaf worm. Biochem. Pharmacol. (in press, 1972).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • I. Y. Mostafa
    • 1
  • I. M. I. Fakhr
    • 1
  • M. R. E. Bahig
    • 1
  • Y. A. El-Zawahry
    • 1
  1. 1.Department of RadiologyAtomic Energy Authority and National Research CentreCairoEgypt

Personalised recommendations