Archiv für Mikrobiologie

, Volume 56, Issue 4, pp 305–323 | Cite as

Periodicity in cell division and physiological behavior of ditylum brightwellii, a marine planktonic diatom, during growth in light-dark cycles

  • Richard W. Eppley
  • Robert W. Holmes
  • Eystein Paasche


Cells of Ditylum brightwellii, a large marine centric diatom, were partially synchronized by employing an appropriate light-dark cycle. At 20°C this consisted of 8 hrs of illumination at an intensity of 0.05 cal/cm2 min. A single 2.8 l culture was studied over a 20 day period by diluting the culture daily to a standard cell concentration. The sequence of events in cell development was as follows: daughter cells were formed late in the light period, in the dark they elongated and the numerous chromatophores began dividing. A minimum cell buoyancy was observed in the dark concurrent with cell elongation. Increase in cell phosphorus took place in the dark period. The photosynthetic rate of cells removed during the dark period decreased to a minimum. In the following light period photosynthetic rate increased to a maximum, photosynthetic pigments, cell carbon, nitrogen, and carbohydrate increased and cell division again took place. Cell silica content increased concomitant with cell division. Details of cell morphology during cell division, based upon light microscopy, are reported.


Cell Division Photosynthetic Rate Photosynthetic Pigment Dark Period Cell Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, F. A. J., P. M. Williams, and J. D. H. Strickland: Photo-oxidation of organic matter in sea water by ultraviolet radiation, analytical and other applications. Nature (London) 211, 481–483 (1966).Google Scholar
  2. Baker, J. R.: Principles of biological microtechnique. New York: J. Wiley 1958.Google Scholar
  3. Beklemishev, C. W., M. V. Petrikova, and H. J. Semina: (On the cause of the buoyancy of planktonic diatoms.) Trudy Inst. Okeanol. Akad. Nauk SSSR 51, 33–36 (1961).Google Scholar
  4. Bongers, L. H. J.: Changes in photosynthetic activity during algal growth and multiplication. Meded. Landbouwhogesch. Wageningen 58, 1–10 (1958).Google Scholar
  5. Braarud, T.: Experimental studies on marine plankton diatoms. Norske Vidensk.-Akad. Oslo. I. Mat. Naturv. Klasse No. 10 (1945).Google Scholar
  6. Braarud, T., and I. Pappas: Experimental studies on the dinoflagellate Peridinium triquetrum (Ehrb) Lebour. Norske Vidensk.-Akad. Oslo. I. Mat. Naturv. Klasse No. 2, 1–23 (1951).Google Scholar
  7. Cook, J. R.: Photosynthetic activity during the division cycle in synchronized Euglena gracilis. Plant Physiol. 41, 821–825 (1966).Google Scholar
  8. Denffer, D. von: Die planktische Massenkultur pennater Grunddiatomeen. Arch. Mikrobiol. 14, 159–202 (1949).Google Scholar
  9. Doty, M. S.: Phytoplankton photosynthesis periodicity as a function of latitude. J. Mar. Biol. Ass. India 1, 66–68 (1959).Google Scholar
  10. —, and M. Oguri: Evidence for a photosynthetic daily periodicity. Limnol. Oceanog. 2, 37–40 (1957).Google Scholar
  11. Eppley, R. W., and J. L. Coatsworth: Culture of the marine phytoplankter, Dunaliella tertiolecta, with light-dark cycles. Arch. Mikrobiol. 55, 66–80 (1966).Google Scholar
  12. — and P. R. Sloan: Carbon balance experiments with marine phytoplankton. J. Fish. Res. Bd. Canada 22, 1083–1097 (1965).Google Scholar
  13. Gross, F.: The life history of some plankton diatoms. Phil. Trans. B 228, 1–47 (1937).Google Scholar
  14. —, and E. Zeuthen: The buoyancy of plankton diatoms; a problem in cell physiology. Proc. roy. Soc. B 135, 382–389 (1948).Google Scholar
  15. Guillard, R. R. L., and J. H. Ryther: Studies on marine diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Canad. J. Microbiol. 8, 229–239 (1962).Google Scholar
  16. Hardy, A. C.: The plankton of South Georgia whaling grounds and adjacent waters. Disc. Rep. 11, 39–87 (1935).Google Scholar
  17. Hastings, J. W., and B. M. Sweeney: Phased cell division in the marine dinoflagellates. In: Synchrony in cell division and growth (E. Zeuthen, ed.), pp. 307–321 (1964).Google Scholar
  18. —, and B. M. Sweeney: A persistent daily rhythm in photosynthesis. J. gen. Physiol. 45, 69–76 (1961).Google Scholar
  19. Holmes, R. W., and F. T. Haxo: Diurnal variations in the photosynthesis of natural phytoplankton populations in artificial light. U.S. Fish Wildl. Serv. Spec. Sci. Rep. Fish. 279, 73–76 (1958).Google Scholar
  20. Hoogenhout, H.: Synchronous cultures of algae. Phycologia 2, 135–147 (1963).Google Scholar
  21. Jitts, H. R., C. D. McAllister, K. Stephens, and J. D. H. Strickland: The cell division rates of some marine phytoplankters as a function of light and temperature. J. Fish. Res. Bd. Canada 21, 139–157 (1964).Google Scholar
  22. Jørgensen, E.: Die Ceratien. Eine kurze Monographie der Gattung Ceratium Schrank. Internat. Rev. ges. Hydrobiol. Hydrog. Biol. Suppl. ser. 11, 1–124 (1911).Google Scholar
  23. Jørgensen, E. G.: Photosynthetic activity during the life cycle of synchronous Skeletonema cells. Physiol. Plantarum (Copenh.) 19, 789–799 (1966).Google Scholar
  24. —, and E. S. Nielsen: Adaptation in plankton algae. Mem. Ist. ital. Idrobiol. 18 (Suppl.) 37–46 (1965).Google Scholar
  25. Lewin, J. C., B. E. Reimann, W. F. Busby, and B. E. Volcani: Silica shell formation in synchronously dividing diatoms. In: Cell synchrony-studies in biosynthetic regulation (I. L. Cameron and G. M. Padilla, eds.). pp. 169–188 (1966).Google Scholar
  26. Lorenzen, C. J.: Diurnal variation in photosynthetic activity of natural phyto-plankton populations. Limnol. Oceanog. 8, 56–62 (1963).Google Scholar
  27. Moore, H. B.: Marine Ecology. New York: J. Wiley 1958.Google Scholar
  28. Myers, J.: Culture conditions and the development of the photosynthetic mechanism. III. Influence of light intensity on the cellular characteristics of Chlorella. J. gen. Physiol. 29, 419–428 (1946).Google Scholar
  29. Parsons, T. R.: A new method for the microdetermination of chlorophyll c in sea water. J. Mar. Res. 21, 164–171 (1963).Google Scholar
  30. Pirson, A., u. H. Lorenzen: Photosynthetische Sauerstoffentwicklung von Chlorella nach Synchronization durch Licht-Dunkel-Wechsel. Naturwissenschaften 45, 497 (1958).Google Scholar
  31. ——: Synchronized dividing algae. Ann. Rev. Plant Physiology 17, 439–458 (1966).Google Scholar
  32. Reimann, B. E.: Bildung, Bau und Zusammenhänge der Bacillariophyceenschalen. Nova Hedwigia 2, 349–373 (1960).Google Scholar
  33. Rieth, A.: Photoperiodizität bei zentrischen Diatomeen. Planta (Berl.) 30, 294–296 (1939).Google Scholar
  34. Richter, G.: Die Tagesperiodik der Photosynthese bei Acetabularia und ihre Abhängigkeit von Kernaktivität, RNS und Protein-Synthese Z. Naturforsch. 18 B, 1085–1089 (1963).Google Scholar
  35. Shibata, K., Y. Morimura, and H. Tamiya: Precise measurement of the change of statistical distribution of cell size occurring during the synchronous culture of Chlorella. Plant and Cell Physiol. 5, 315–320 (1964).Google Scholar
  36. Shimada, B.: Diurnal fluctuations in photosynthetic rate and chlorophyll “a” content of phytoplankton from Eastern Pacific waters. Limnol. Oceanog. 3, 336–339 (1958).Google Scholar
  37. Smayda, T. J., and B. Boleyn: Experimental observations on the flotation of marine diatoms. II. Skeletonema costatum and Rhizosolenia setigera. Limnol. Oceanog. 11, 18–34 (1966).Google Scholar
  38. Sorokin, C.: Changes in photosynthetic activity in the course of cell development in Chlorella. Physiol. Plantarum (Copenh.) 10, 659–666 (1957).Google Scholar
  39. Stosch, H. A. von: Die Verwendung von Chloralhydrat oder Phenol zur Aufhellung und von Phenol-Balsam als Einschlußmittel für Essigkarminpräparate. Züchter 22, 269–272 (1952).Google Scholar
  40. —: Manipulierung der Zellgröße von Diatomeen im Experiment. Phycologia 5, 21–44 (1965).Google Scholar
  41. Stosch, H. A. von, u. G. Drebes: Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen. IV. Die Planktondiatomee Stephanopyxis turris, ihre Behandlung und Entwicklungsgeschichte. 1964.Google Scholar
  42. Strickland, J. D. H., and T. R. Parsons: A manual of sea water analysis. Bull. Fish. Res. Bd. Canada 125 (rev. ed), 203 (1965).Google Scholar
  43. Subrahmanyan, R.: On the cell division and mitosis in some south Indian diatoms. Proc. Indian Acad. Sci. B 22, 331–354 (1945).Google Scholar
  44. Sweeney, B. M., and J. W. Hastings: Rhythmic cell division in populations of Gonyaulax polyedra. J. Protozool. 5, 217–224 (1958).Google Scholar
  45. —, and F. T. Haxo: Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134, 1361–1363 (1961).Google Scholar
  46. Tůma, J.: Optimum conditions for the colorimetric microdetermination of silicon. Mikrochim. Acta 3, 513–523 (1962).Google Scholar
  47. Winokur, M.: Photosynthetic relationships of Chlorella species. Amer. J. Bot. 35, 207–214 (1948).Google Scholar
  48. Yentsch, C. S., and J. H. Ryther: Short-term variations in phytoplankton chlorophyll and their significance. Limnol. Oceanog. 2, 140–142 (1957).Google Scholar
  49. —, and R. F. Scagel: Diurnal study of phytoplankton pigments, an in situ study in East Sound, Washington. J. Mar. Res. 17, 567–583 (1958).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Richard W. Eppley
    • 1
  • Robert W. Holmes
    • 1
  • Eystein Paasche
    • 1
  1. 1.Institute of Marine ResourcesUniversity of CaliforniaLa Jolla

Personalised recommendations