Advertisement

Archives of Microbiology

, Volume 150, Issue 2, pp 197–202 | Cite as

Algae sequester heavy metals via synthesis of phytochelatin complexes

  • Walter Gekeler
  • Erwin Grill
  • Ernst-Ludwig Winnacker
  • Meinhart H. Zenk
Original Papers

Abstract

A Cd-binding complex was isolated from Chlorella fusca and has been shown to be composed of phytochelating peptides, (γ-Glu-Cys) n -Gly, n=2–5. Members of six of the ten classes of Phycophyta revealed phytochelatin synthesis after exposure to cadmium ions. Phytochelatin was also induced by ions of lead, zinc, silver, copper and mercury. These experiments uneqiovocally demonstrated that algae sequester heavy metals by an identical mechanism as higher plants, namely via complexation to phytochelatins.

Key words

Algae Heavy metal Glutathione Phytochelatin Sulfide Metallothionein Inducible Cd-binding complex Chlorella fusca 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker EW (1986) Nutritional properties of microalgae: potentials and constraints. In: Richmond A (ed) CRC Handbook of microalgal mass culture. CRC Press Inc, Boca Raton, Florida, pp 339–376Google Scholar
  2. Chang J-Y (1981) N-Terminal sequence analysis of polypeptide at the picomole level. Biochem J 199:557–560Google Scholar
  3. Chu SP (1942) The influence of the mineral composition of the medium on the growth of planctonic algae. I. Methods and culture media. J Ecol 30:284–352Google Scholar
  4. Connell GE, Adamson ED (1970) γ-Glutamyltranspeptidase. In: Perlmann GE, Lorand L (eds) Methods in enzymology, vol 19. Academic Press, New York, pp 782–789Google Scholar
  5. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77Google Scholar
  6. Frankel M, Gerstner D, Jacobson H, Zilkha A (1960) Synthesis of poly-S-alkyl-L-cysteines. J Chem Soc (Lond) 1960:1390–1393Google Scholar
  7. Gingrich DJ, Weber DN, Shaw CF, Garvey JS, Petering DH (1986) Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium. Environ Health Perspect 65:77–85Google Scholar
  8. Grill E, Winnacker E-L, Zenk MH (1985a) Phytochelatins: the principal heavy metal-complexing peptides of higher plants. Science 230:574–576Google Scholar
  9. Grill E, Zenk MH, Winnacker E-L (1985b) Induction of heavy metal-sequestering phytochelatin by cadmium in cell cultures of Rauvilfia serpentina. Naturwiss 72:432–434Google Scholar
  10. Grill E, Winnacker E-L, Zenk MH (1986a) Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett 197:115–120Google Scholar
  11. Grill E, Gekeler W, Winnacker E-L, Zenk MH (1986b) Homophytochelatins are heavy metal-binding peptides of homoglutathione containing Fabales. FEBS Lett 20:47–50Google Scholar
  12. Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443Google Scholar
  13. Hart BA, Bertram PE (1980) A cadmium-binding protein in a cadmium tolerant strain of Chlorella pyrenoidosa. Envir Exp Bot 20:175–180Google Scholar
  14. Hayashi Y, Nakagawa CW, Murasugi A (1986) Unique properties of Cd-binding Peptides induced in fission yeast, Schizosaccharomyces pombe. Environ Health Persp 65:13–19Google Scholar
  15. Hirs CWM (1956) The oxidation of ribonuclease with performic acid. J Biol Chem 219:611–621Google Scholar
  16. Kägi JHM, Kojima Y (1987) Metallothionein, II. Birkhäuser, BaselGoogle Scholar
  17. Kägi JHM, Nordberg M (1979) Metallothionein, I. Birkhäuser, BaselGoogle Scholar
  18. Kessler E (1986) Limits of growth of five Chlorella species in the presence of toxic heavy metals. Arch Hydrobiol [Suppl] 73: 123–128Google Scholar
  19. Krauss E, Schmidt A (1987) Sulphur sources for growth of Chlorella fusca, and their influence on key enzymes of sulphur metabolism. J Gen Microbiol 133:1209–1219Google Scholar
  20. Lue-Kim H, Rauser WE (1986) Partial characterization of a cadmium-binding protein from roots of tomato. Plant Phys 81:896–900Google Scholar
  21. Müller H (1972) Wachstum und Phosphatbedarf von Nitzschia actinastroides (Lemm) var. Goor in statischer und homokontinuierlicher Kultur unter Phosphatlimitierung. Arch Hydrobiol Suppl 38:399–484Google Scholar
  22. Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide I from fission yeast. J Biochem 93:661–664Google Scholar
  23. Nagano T, Watanabe Y, Hida K, Suketa Y, Okada S (1982) Production of cadmium-binding protein in Chlorella ellipsoidea. Eisei Kagaku 28:83–88Google Scholar
  24. Nagano T, Miwa M, Suketa S, Okada S (1984) Isolation, physicochemical properties, and amino acid composition of a cadmium-binding protein from cadmium-treated Chlorella ellipsoidea. J Inorg Biochem 21:61–71Google Scholar
  25. Newton GL, Dorian R, Fahey RC (1981) Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem 114:383–387Google Scholar
  26. Sanger F (1949) The terminal peptides of insulin. Biochem J 45:563–574Google Scholar
  27. Schlösser UG (1982) Sammlung von Algenkulturen (SAG). Ber D Bot Ges 95:181–276Google Scholar
  28. Stokes PM, Maler T, Riordan JR (1977) A low molecular weight copper-binding protein in a copper tolerant strain of Scenedesmus acutiformis. In: Hemphil DD (ed) Trace substances in environmental health — XI. Univ. of Missouri Press, Columbia MO, pp 146–154Google Scholar
  29. Weber DN, Shaw CF, Petering DH (1987) Euglena gracilis cadmium binding Protein-II contains sulfide ion. J Biol Chem 262:6962–6964Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Walter Gekeler
    • 1
  • Erwin Grill
    • 1
  • Ernst-Ludwig Winnacker
    • 2
  • Meinhart H. Zenk
    • 1
  1. 1.Pharmazeutische Biologie der Universität MünchenMünchen 2Germany
  2. 2.Genzentrum der Universität MünchenMartinsriedGermany

Personalised recommendations