Advertisement

Archives of Microbiology

, Volume 109, Issue 1–2, pp 147–151 | Cite as

The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain bath

  • Howard Dalton
  • Roger Whittenbury
Article

Abstract

The use of acetylene as a convenient assay substrate for nitrogenase in methane oxidising bacteria is complicated by the observation that it is a potent inhibitor of the methane monooxygenase enzyme in both whole cells and cell-free extracts. If the cells were provided with alternative oxidisable carbon substrates other than methane then nitrogen fixing cells would reduce acetylene to ethylene. Hydrogen gas also served as an oxidisable substrate in the assay. Nitrous oxide, which is reduced by nitrogenase to N2 and H2O, was not an inhibitor of methane monooxygenase function and could be used as a convenient assay substrate for nitrogenase. Reduction of both substrates by whole cells showed similar response to oxygen in the assay system and in this respect Methylococcus resembles other free living nitrogen fixing aerobes.

Key words

Acetylene reduction Methane monooxygenase Inhibition by acetylene Oxygen sensitivity Methylococcus capsulatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colby, J., Dalton, H., Whittenbury, R.: An improved assay for bacterial methane monooxygenase: Some properties of the enzyme from Methylomonas methanica. Biochem. J. 151, 459–462 (1975)Google Scholar
  2. Colby, J., Zatman, L. J.: Hexose phosphate synthase and tricarboxylic acid-cycle enzymes in Bacterium 4B6, an obligate methylotroph. Biochem. J. 128, 1373–1376 (1972)Google Scholar
  3. Coty, V.: Atmospheric nitrogen fixation by hydrocarbon-oxidizing bacteria. Biotechnol. Bioeng. 9, 25–32 (1967)Google Scholar
  4. De Bont, J. A. M., Mulder, E. G.: Nitrogen fixation and co-oxidation of ethylene by a methane-utilizing bacterium. J. gen. Microbiol. 83, 113–121 (1974)Google Scholar
  5. Dalton, H., Mortenson, L. E.: Dinitrogen (N2) fixation (with a biochemical emphasis). Bact. Rev. 36, 231–260 (1972)Google Scholar
  6. Dalton, H., Postgate, J. R.: Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. J. gen. Microbiol. 54, 463–473 (1969)Google Scholar
  7. Davis, J. B., Coty, V. G., Stanley, J. P.: Atmospheric nitrogen fixation by methane oxidizing bacteria. J. Bact. 88, 468–472 (1964)Google Scholar
  8. Dilworth, M. J.: Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. biophys. Acta (Amst.) 127, 285–294 (1966)Google Scholar
  9. Elleway, R. F., Sabine, J. R., Nicholas, D. J. D.: Acetylene reduction by rumen microflora. Arch. Mikrobiol. 76, 277–291 (1971)Google Scholar
  10. Ferenci, T.: Carbon monoxide stimulated respiration in methane utilizing bacteria. FEBS Lett. 41, 94–98 (1974)Google Scholar
  11. Ferenci, T., Strom, T., Quayle, J. R.: Oxidation of carbon monoxide and methane by Pseudomonas methanica. J. gen. Microbiol. 91, 79–91 (1975)Google Scholar
  12. Hardy, R. W. F., Holsten, R. D., Jackson, E. K., Burns, R. C.: The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968)Google Scholar
  13. Hill, S., Drozd, J. W., Postgate, J. R.: Environmental effects on the growth of nitrogen-fixing bacteria. J. appl. chem. Biotechnol. 22, 541–558 (1972)Google Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  15. Macgregor, A. N., Keeney, D. R.: Methane formation by lake sediments during in vitro incubation. Water, Res. Bull. 9, 1153–1158 (1973)Google Scholar
  16. Postgate, J. R.: The acetylene reduction test for nitrogen fixation. In: Methods in microbiol. (J. R. Norris, D. W. Ribbons, eds.), Vol. 6B, pp. 343–356. London: Academic Press 1972Google Scholar
  17. Schöllhorn, R., Burris, R. H.: The reduction of azide by the N2-fixing enzyme system. Proc. nat. Acad. Sci. (Wash.) 57, 1317–1323 (1967)Google Scholar
  18. Tonge, G. M., Harrison, D. E. F., Knowles, C. J., Higgins, I. J.: Properties and partial purification of the methane oxidising enzyme system from Methylosinus trichosporium. FEBS Lett. 58, 293–299 (1975)Google Scholar
  19. Whittenbury, R., Dalton, H., Eccleston, M., Reed, H. L.: The different types of methane oxidizing bacteria and some of their more unusual properties. Microbial growth on C1 compounds, 1–9 Tokyo. The Society of Fermentation Technology, Japan (1975)Google Scholar
  20. Whittenbury, R., Phillips, K. C., Wilkinson, J. R.: Enrichment, isolation and some properties of methane-utilizing bacteria. J. gen. Microbiol. 61, 205–218 (1970)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Howard Dalton
    • 1
  • Roger Whittenbury
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryEngland

Personalised recommendations