Archiv für Mikrobiologie

, Volume 87, Issue 2, pp 173–180 | Cite as

Molecular basis for the differential anti-metabolite action of d-tyrosine in strains 23 and 168 of Bacillus subtilis

  • Roy A. Jensen
  • Sherry L. Stenmark
  • W. Scott Champney


The basis for the difference between strains 168 (d-tyrosine-sensitive) and 23 (d-tyrosine-resistant) of Bacillus subtilis at the molecular level is that of transport of d-tyrosine into the cell. Strain 23 does not incorporate significant amounts of d-tyrosine into whole cells. A mutant derivative was isolated from strain 23 which had an altered transport system permitting d-tyrosine uptake, a change which also led to inhibition of growth by d-tyrosine. Strain 168 is extremely sensitive to growth inhibition caused by low concentrations of the d-isomer of tyrosine. A mutant derivative of strain 168 selected for its d-tyrosine resistant phenotype had an altered transport system which no longer recognized the d-isomer of tyrosine. These mutants define at least one element of the tyrosine transport system in B. subtilis and provide a convenient phenotype for the eventual location of the chromosal map position.


Tyrosine Bacillus Growth Inhibition Molecular Level Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, R. L., Harford, N., Kennett, R. H., St. Pierre, M. L., Sueoka, N.: Experimental methods for Bacillus subtilis. In: S. P. Colowick and N. O. Kaplan (ed.): Methods in enzymology, vol. VIIA, pp. 36–59. New York: Academic Press 1970.Google Scholar
  2. Bovarnick, M.: The formation of extracellular d(-)-glutamic acid polypeptide by Bacillus subtilis. J. biol. Chem. 145, 415–424 (1942).Google Scholar
  3. Burkholder, P. R., Giles, N. H.: Induced biochemical mutations in Bacillus subtilis. Amer. J. Bot. 34, 345–348 (1947).Google Scholar
  4. Calendar, R., Berg, P.: d-tyrosyl RNA: Formation, hydrolysis and utilization for protein synthesis. J. molec. Biol. 26, 39–54 (1967).Google Scholar
  5. Champney, W. S., Jensen, R. A.: d-tyrosine as a metabolic inhibitor of Bacillus subtilis. J. Bact. 98, 205–213 (1969).Google Scholar
  6. Champney, W. S., Jensen, R. A.: Molecular events in the growth inhibition of Bacillus subtilis by d-tyrosine. J. Bact. 104, 107–116 (1970a).Google Scholar
  7. Champney, W. S., Jensen, R. A.: Enzymology of prephenate dehydrogenase in Bacillus subtilis. J. biol. Chem. 245, 3763–3770 (1970b).Google Scholar
  8. Corrigan, J. L.: d-amino acids in animals. Science 164, 142–149 (1969).Google Scholar
  9. Grula, E. A.: Cell division in a species of Erwinia. II. Inhibition of division by d-amino acids. J. Bact. 80, 375–385 (1960).Google Scholar
  10. Herbert, D., Elsworth, R., Telling, R. C.: The continuous culture of bacteria: a theoretical and experimental study. J. gen. Microbiol. 14, 601–622 (1956).Google Scholar
  11. Horowitz, N. H., Fling, M., Feldman, H. M., Pall, M. L., Froehner, S. C.: Derepression of tyrosine synthesis in Neurospora by amino acid analogs. Develop. Biol. 21, 147–156 (1970).Google Scholar
  12. Jensen, R. A.: A biochemical basis for apparent abortive transformation in Bacillus subtilis. Genetics 60, 707–717 (1968).Google Scholar
  13. Kane, J. F., Stenmark, S. L., Calhoun, D. H., Jensen, R. A.: Metabolic interlock: the role of the subordinate type of enzyme in the regulation of a complex pathway. J. biol. Chem. 246, 4308–4316 (1971).Google Scholar
  14. Salton, M. J. R., Williams, R. C.: Electron microscopy of the cell walls of Bacillus megaterium and Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 14, 455–458 (1954).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Roy A. Jensen
    • 1
  • Sherry L. Stenmark
    • 1
  • W. Scott Champney
    • 1
  1. 1.Department of MicrobiologyBaylor College of MedicineHoustonUSA

Personalised recommendations