Archiv für Mikrobiologie

, Volume 78, Issue 3, pp 234–251 | Cite as

Amino acid and glucose fermentation by Treponema denticola

  • Robert B. Hespell
  • E. Canale-Parola


Treponema denticola was grown in serum-containing media to which 14C-labelled compounds were added. Determinations of radioactivity in the products formed indicated that the organism fermented alanine, cysteine, glycine, serine, and glucose. Fermentation products included acetate, lactate, succinate, formate, pyruvate, ethanol, CO2, H2S, and NH3. The products formed from glucose constituted a small portion of the total products. Assays of enzymatic activities in cell extracts indicated that the organism degraded glucose via the Embden-Meyerhof pathway. T. denticola possessed a coenzyme A-dependent CO2-pyruvate exchange activity associated with a clostridial-type clastic system for pyruvate metabolism. Phosphotransacetylase and acetate kinase activities were present in cell extracts. Acetyl phosphate formation and benzyl viologen reduction were detected when cell extracts were incubated with pyruvate, serine or cysteine. The data indicate that T. denticola is an amino acid fermenter and that it possesses the enzymes needed for the fermentation of glucose. However, glucose does not serve as the primary substrate when the organism grows in media including both this carbohydrate and amino acids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajello, Francesca: Activation of acetate in the treponemes (pathogenic Pallidum and non pathogenic Reiter and Kazan treponemes). G. Microbiol. 17, 107–114 (1969).Google Scholar
  2. Barker, S. B., Summerson, W. H.: The colorimetric determination of lactic acid in biological material. J. biol. Chem. 138, 535–554 (1941).Google Scholar
  3. Breznak, J. A., Canale-Parola, E.: Spirochaeta aurantia, a pigmented, facultatively anaerobic spirochete. J. Bact. 97, 386–395 (1969).Google Scholar
  4. Burnett, G. W., Scherp, H. W.: Oral microbiology and infectious disease, 3rd ed. Baltimore: The Williams and Wilkins Co. 1968.Google Scholar
  5. Canale-Parola, E., Holt, S. C., Udris, Z.: Isolation of free-living, anaerobic spirochetes. Arch. Mikrobiol. 59, 41–48 (1967).Google Scholar
  6. —, Udris, Z., Mandel, M.: The classification of free-living spirochetes. Arch. Mikrobiol. 63, 385–397 (1968).Google Scholar
  7. Feigl, F.: Spot tests in inorganic analysis, 5th ed. New York: Elsevier Publishing Co. 1958.Google Scholar
  8. Feigl, F.: Spot tests in organic analysis, 6th ed. New York: Elsevier Publishing Co. 1960.Google Scholar
  9. Fogo, J. K., Popowsky, M.: Spectrophotometric determination of hydrogen sulfide. Anal. Chem. 21, 732–734 (1949).Google Scholar
  10. Friedemann, T. E., Haugen, G. E.: Pyruvic acid. II. The determination of keto acids in blood and urine. J. biol. Chem. 147, 415–442 (1943).Google Scholar
  11. Hespell, R. B., Canale-Parola, E.: Carbohydrate metabolism in Spirochaeta stenostrepta. J. Bact. 103, 216–226 (1970a).Google Scholar
  12. ——: Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch. Mikrobiol. 74, 1–18 (1970b).Google Scholar
  13. —, Joseph, R., Mortlock, R. P.: Requirement for coenzyme A in the phosphoroclastic reaction of anaerobic bacteria. J. Bact. 100, 1328–1334 (1969).Google Scholar
  14. Inouye, M., Pardee, A. B.: Requirement of polyamines for bacterial division. J. Bact. 101, 770–776 (1970).Google Scholar
  15. Kennedy, E. P., Barker, H. A.: Paper chromatography of volatile acids. Analyt. Chem. 23, 1033 (1951).Google Scholar
  16. Lipmann, F., Tuttle, L. C.: A specific micromethod for the determination of acyl phosphates. J. biol. Chem. 159, 21–28 (1945).Google Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).Google Scholar
  18. McCormick, N. G., Ordal, E. J., Whiteley, H. R.: Degradation of pyruvate by Micrococcus lactilyticus. I. General properties of the formate-exchange reaction. J. Bact. 83, 887–898 (1962).Google Scholar
  19. Mortlock, R. P., Valentine, R. C., Wolfe, R. S.: Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum. J. biol. Chem. 234, 1653–1656 (1959).Google Scholar
  20. Neish, A. C.: Analytical methods for bacterial fermentations. Nat. Res. Council of Canada, Report No. 46-8-3 (2nd revision), Saskatoon 1952.Google Scholar
  21. Peck, H. D., Jr., Gest, H.: A new procedure for assay of bacterial hydrogenases. J. Bact. 71, 70–80 (1956).Google Scholar
  22. Rose, I. A., Grunberg-Manago, M., Korey, S. R., Ochoa, S.: Enzymatic phosphorylation of acetate. J. biol. Chem. 211, 737–756 (1954).Google Scholar
  23. Socransky, S. S.: Relationship of bacteria to the etiology of periodontal disease. J. dent. Res. 49, 203–222 (1970).Google Scholar
  24. —, Listgarten, M., Hubersak, C., Cotmore, J., Clark, A.: Morphological and biochemical differentiation of three types of small oral spirochetes. J. Bact. 98, 878–882 (1969).Google Scholar
  25. Stadtman, E. R., Novelli, G. D., Lipmann, F.: Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. biol. Chem. 191, 365–376 (1951).Google Scholar
  26. Stickland, L. H.: Studies in the metabolism of the strict anaerobes (genus Clostridium). I. The chemical reactions by which Cl. sporogenes obtains its energy. Biochem. J. 28, 1746–1759 (1934).Google Scholar
  27. — Studies in the metabolism of the strict anaerobes (genus Clostridium). III. The oxidation of alanine by Cl. sporogenes. IV. The reduction of glycine by Cl. sporogenes. Biochem. J. 29, 889–898 (1935).Google Scholar
  28. Strecker, H. J.: Formate fixation in pyruvate by Escherichia coli. J. biol. Chem. 189, 815–830 (1951).Google Scholar
  29. Swim, H. E., Utter, M. F.: Isotopic experimentation with intermediates of the tricarboxylic acid cycle. In: S. P. Colowick and N. O. Kaplan (edit.) Methods in enzymology, vol. 4, pp. 584–609. New York: Academic Press Inc. 1957.Google Scholar
  30. Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric techniques, 4th ed. Minneapolis, Minn.: Burgess Publishing Co. 1964.Google Scholar
  31. Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z. 310, 384–421 (1942).Google Scholar
  32. Westerfeld, W. W.: A colorimetric determination of blood acetoin. J. biol. Chem. 161, 495–502 (1945).Google Scholar
  33. Wolfe, R. S., O'Kane, D. J.: Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J. biol. Chem. 205, 755–765 (1953).Google Scholar
  34. ——: Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J. biol. Chem. 215, 637–643 (1955).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Robert B. Hespell
    • 1
  • E. Canale-Parola
    • 1
  1. 1.Department of MicrobiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations