Archiv für Mikrobiologie

, Volume 87, Issue 3, pp 189–202 | Cite as

Coenzyme specificity of dehydrogenases and fermentation of pyruvate by clostridia

  • Hasso v. Hugo
  • Siegfried Schoberth
  • Vijay K. Madan
  • Gerhard Gottschalk


Four clostridial species (C. pasteurianum, C. butylicum, C. butyricum and C. tetanomorphum) grow on pyruvate. Two other species (C. roseum and C. rubrum) only ferment this compound; this is probably due to their inability to synthesize hexose phosphates from pyruvate (fructose-1,6-diphosphatase and pyruvate carboxylase are absent).

The fermentation of pyruvate by the above clostridia yields acetate, carbon dioxide, hydrogen and small amounts of compounds more reduced than acetate. Hydrogen pressure increases the amount of ethanol, butanol and butyrate formed during the fermentation of pyruvate. Since C. roseum and C. rubrum contain a ferredoxin: NADP reductase it seems likely that NADPH2 is the coenzyme involved in ethanol formation. In accordance with this acetaldehyde and alcohol dehydrogenases exhibit activity with NADPH2.

The glyceraldehyde-3-phosphate dehydrogenase of the clostridia under investigation is NAD specific and so is the β-hydroxy-butyryl-CoA dehydrogenase with the exception of C. kluyveri.

The specific activity of hydrogenase and the coenzyme specificity of NAD(P) reductase vary among the clostridial species.


Fermentation Dioxide Carbon Dioxide Pyruvate NADPH2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, H. A.: On the fermentation of glutamic acid. Enzymologia 2, 175–182 (1937).Google Scholar
  2. Barker, H. A., Smyth, R. D., Wilson, R. M., Weissbach, H.: The purification and properties of β-methylaspartase. J. biol. Chem. 234, 320–328 (1959).Google Scholar
  3. Bergmeyer, H. U.: Alkohol-Dehydrogenase. In: H. U. Bergmeyer, ed.: Methoden der enzymatischen Analyse, Bd. I, S. 392–393. Weinheim, Bergstr.: Verlag Chemie 1970.Google Scholar
  4. Bergmeyer, H. U.: Glycerinaldehyd-3-phosphat-Dehydrogenase. In: H. U. Bergmeyer, ed.: Methoden der enzymatischen Analyse, Bd. I, S. 425–426. Weinheim, Bergstr.: Verlag Chemie 1970.Google Scholar
  5. Bergmeyer, H. U., Bernt, E.: d-Glucose-Bestimmung mit Glucose-Oxydase und Peroxydase. In: H. U. Bergmeyer, ed.: Methoden der enzymatischen Analyse, Bd. II, S. 1172–1174. Weinheim, Bergstr.: Verlag Chemie 1970.Google Scholar
  6. Bornstein, B. T., Barker, H. A.: The nutrition of Clostridium kluyveri. J.Bact. 55, 223–230 (1948).Google Scholar
  7. Burton, R. M., Stadtman, E. R.: The oxidation of acetaldehyde to acetyl-CoA. J. biol. Chem. 202, 873–890 (1953).Google Scholar
  8. Cohen, G. N., Cohen-Bazire, G.: Fermentation of pyruvate, β-hydroxybutyrate and of C4-dicarboxylic acids by some butyric acid-forming organisms. Nature (Lond.) 162, 578 (1948).Google Scholar
  9. Dagley, St.: Citrat, UV-spektrophotometrische Bestimmung. In: H. U. Bergmeyer, ed.: Methoden der enzymatischen Analyse, Bd. II, S. 1520–1523. Weinheim, Bergstr.: Verlag Chemie 1970.Google Scholar
  10. Eliasberg, P.: Wasserstoff und die Buttersäuregärung. Biochem. Z. 220, 259–277 (1930).Google Scholar
  11. Fredricks, W. W., Stadtman, E. R.: The role of ferredoxin in the hydrogenase system from Clostridium kluyveri. J. biol. Chem. 240, 4065–4071 (1965).Google Scholar
  12. Gottschalk, G., Chowdhury, A. A.: Pyruvate synthesis from acetyl coenzyme A and carbon dioxide with NADH2 or NADPH2 as electron donors. FEBS Letters 2, 342–344 (1969).Google Scholar
  13. Henning, H. V., Seubert, W.: Zum Mechanismus der Gluconeogenese und ihre Steuerung. I.Quantitative Bestimmung der Pyruvat-Carboxylase in Rohextrakten der Rattenleber. Biochem. Z. 340, 160–170 (1964).Google Scholar
  14. Hillmer, P., Gottschalk, G.: Particulate nature of enzymes involved in the fermentation of ethanol and acetate by Clostridium kluyveri. FEBS Letters 21, 351–354 (1972).Google Scholar
  15. Jungermann, K., Leimenstoll, G., Rupprecht, E., Thauer, R. K.: Demonstration of NADH-ferredoxin reductase in two saccharolytic clostridia. Arch. Mikrobiol. 80, 370–372 (1971).Google Scholar
  16. Kaplan, F., Setlow, P., Kaplan, N. O.: Purification and properties of a DPNH-TPNH diaphorase from Clostridium kluyveri. Arch. Biochem. 132, 91–98 (1969).Google Scholar
  17. Langlykke, A. F., Peterson, W. H., Fred, E. B.: Reductive processes of Clostridium butylicum and the mechanism of formation of isopropyl alcohol. J. Bact. 34, 443–453 (1937).Google Scholar
  18. La Rivière, J. W. M.: On the microbial metabolism of the tartaric isomers. Thesis, Delft 1958.Google Scholar
  19. Lee, C. K., Ordal, Z. J.: Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum.J. Bact. 94, 530–536 (1967).Google Scholar
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent.J. biol. Chem. 193, 265–275 (1951).Google Scholar
  21. Lynen, F., Wieland, H.: In: S. P. Colowick and N. O. Kaplan, eds.: Methods in enzymology, Vol. I, pp.566–573. New York: Academic Press 1955.Google Scholar
  22. Mahler, H. R.: Diaphorases. In: S. P. Colowick and N. O. Kaplan, eds.: Methods in enzymology, Vol. II, pp. 707–711. New York: Academic Press 1955a).Google Scholar
  23. Mahler, H. R.: Butyryl-coenzyme A dehydrogenase. In: S. P. Colowick and N. O. Kaplan, eds.: Methods in enzymology, Vol. I, pp. 553–559. New York: Academic Press 1955b.Google Scholar
  24. Mortenson, L. E.: Purification and analysis of ferredoxin from Clostridium pasteurianum. Biochim. biophys. Acta 81, 71–77 (1964).Google Scholar
  25. Nakos, G., Mortenson, L. E.: Structural properties of hydrogenase from Clostridium pasteurianum. Biochemistry 10, 2442–2449 (1971).Google Scholar
  26. Nicholas, D. J. D., Fisher, D. J., Redmond, W. J., Wright, M. A.: Some aspects of hydrogenase activity and nitrogen fixation in Azotobacter spp. and in Clostridium pasteurianum. J. gen. Microbiol. 22, 191–205 (1960).Google Scholar
  27. Passoneau, J. V., Lowry, O. H.: Pyruvat, fluorometrische Bestimmung. In: H. U. Bergmeyer, ed.: Methoden der enzymatischen Analyse, Bd. II, S. 1412–1416. Weinheim, Bergstr.: Verlag Chemie 1970.Google Scholar
  28. Peck, H. D., Gest, H.: A new procedure for assay of bacterial hydrogenases. J. Bact. 71, 70–80 (1956).Google Scholar
  29. Peck, H. D., Gest, H.: Hydrogenase of Clostridium butylicum. J. Bact. 73, 569–580 (1957).Google Scholar
  30. Peel, J. L.: The separation of flavins by paper electrophoresis and its application to the examination of the flavin contents of microorganisms. Biochem. J. 69, 403–416 (1958).Google Scholar
  31. Petitdemange, H., Bellanger, M., Lambert, D., Gay, R.: Activités NAD et NADP ferrédoxine réductasiques des extraits acellulaires de clostridia du groupe des butyriques. C. R. Acad. Sci. (Paris) 272, 2840–2843 (1971).Google Scholar
  32. Rabinowitz, J. C.: Intermediate in purine breakdown, In: S. P. Colowick and N. O. Kaplan, eds.:Methods in enzymology, Vol. VI, pp. 703–711. New York: Academic Press 1963.Google Scholar
  33. Racker, E., Schroeder, E. A. R.: The reductive pentose phosphate cycle II. Specific C1-phosphatases for fructose-1,6-diphosphate and seduheptulose-1,7-diphosphate. Arch. Biochem. 74, 326–344 (1958).Google Scholar
  34. Schmidt, K., Liaaen-Jensen, S., Schlegel, H. G.: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch. Mikrobiol. 46, 117–126 (1963).Google Scholar
  35. Tamiya, N., Kondo, Y., Kameyama, T., Akabori, S.: Determination of hydrogenase by the hydrogen evolution from reduced methyl viologen. J. Biochem. 42, 613–614 (1955).Google Scholar
  36. Thauer, R. K., Jungermann, K., Rupprecht, E., Decker, K.: Hydrogen formation from NADH in cell-free extracts of Clostridium kluyveri.FEBS Letters 4, 108–112 (1969).Google Scholar
  37. Thauer, R. K., Rupprecht, E., Ohrloff, C., Jungermann, K., Decker, K.: Regulation of the reduced nicotinamide adenine dinucleotide phosphate-ferredoxin reductase system in Clostridium kluyveri. J. biol. Chem. 246, 954–959 (1971).Google Scholar
  38. Umbreit, W., Burris, R., Stauffer, J.: Manometic techniques. Minneapolis, Minn.: Burgess Publ. Co. 1964.Google Scholar
  39. Valentine, R. C.: Bacterial ferredoxin. Bact. Rev. 28, 497–517 (1964).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Hasso v. Hugo
    • 1
    • 2
  • Siegfried Schoberth
    • 1
    • 2
  • Vijay K. Madan
    • 1
    • 2
  • Gerhard Gottschalk
    • 1
    • 2
  1. 1.Institut für Mikrobiologie der Universität GöttingenGermany
  2. 2.Institut für Mikrobiologie der Gesellschaft für Strahlen- und Umweltforschung mbH München in GöttingenGermany

Personalised recommendations