Advertisement

Archiv für Mikrobiologie

, Volume 88, Issue 2, pp 97–109 | Cite as

Cinétique de dégradation des hydrocarbures par Candida lipolytica

  • Gérard Goma
  • Alain Pareilleux
  • Gilbert Durand
Article

Résumé

Le mécanisme d'assimilation des hydrocarbures par une levure, Candida lipolytica est étudié au moyen de l'analyse cinétique de la croissance du microorganisme et de la disparition du substrat hydrocarboné. Les hydrocarbures utilisés sont des n-paraffines. On ajoute au milieu soit un seul hydrocarbure (n-tetradécane ou n-hexadécane), soit un mélange binaire (n-dodécane et n-heptadécane), soit un mélange complexe (du n-undécane au n-octadécane). Contrairement à d'autres auteurs, nous pensons qu'il est peu probable que l'essentiel de la réaction s'effectue par contact des gouttes de substrat et des microorganismes puisque l'on observe des retards d'assimilation de certains hydrocarbures: ceux de faible poids moléculaire (les plus solubles) sont assimilés plus rapidement. Il semble donc que l'assimilation se fasse en grande partie à partir d'hydrocarbures préablement solubilisés.

Kinetics of hydrocarbon assimilation by Candida lipolytica

Summary

The mechanism of hydrocarbon uptake by a yeast, Candida lipolytica has been studied by means of the kinetic analysis of micro-organism growth and substrate assimilation. Hydrocarbons used as only source of carbon are normal alkanes either pure (n-tetradecane or n-hexadecane) or in mixture of two paraffins (n-dodecane and n-heptadecane) or eight paraffins (n-undecane to n-octadecane). In these last cases delays in n-alkanes consumption are observed. They show that the most soluble substrates (lower molecular weight) are first consumed. In opposition to other authors we think that there is little probability for main reaction occurring by direct contact between drops and micro-organisms. The evidence indicates that n-alkanes are mainly utilized in the dissolved state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Aiba, S., Haung, K. L., Moritz, V., Someya, J.: Cultivation of yeast cells by using n-alkanes as the sole carbon source. II. An approach to the microbial uptake of n-alkanes. J. Ferment. Technol. 47, 211–219 (1969).Google Scholar
  2. Augier, J.: A propos de la numération des Azotobacter en milieu liquide. Ann. Inst. Pasteur 91, 759–765 (1950).Google Scholar
  3. Bakhuis, E., Bos, P.: Correlation between growth of Candida lipolytica and size of droplets in the hydrocarbon containing media. Antonie v. Leeuwenhoek 35, Suppl.: Yest Symposium, F47-F48 (1969).Google Scholar
  4. Ballerini, D.: Etude descriptive et cinétique de la crosisance d'une levure Candida lipolytica à partir d'alcanes normaux. Thèse Docteur-Ingénieur, Paris 1969.Google Scholar
  5. Dostalek, M., Munk, V., Volfova, O.: Cultivation of the yeast Candida lipolytica on hydrocarbons. I. Degradation of n-alkanes in batch fermentation of gas oil. Biotechnol. Bioeng. 10, 33–43 (1968).Google Scholar
  6. Einsele, A., Fiechter, A.: Novel energy and carbon sources. B-liquid and solid hydrocarbons. Adv. Bioch. Eng. 1, 169–194 (1971).Google Scholar
  7. Erdtsieck, A., Rietema, K.: Interface area limitation in the growth of yeast on liquid n-alkanes. Antonie v. Leeuwenhoek 35, Suppl.: Yeast symposium, F19-F21 (1969).Google Scholar
  8. Erickson, L. E., Humphrey, A. E., Prokop, A.: Growth models of cultures with two liquid phases. I. Substrate dissolved in dispersed phase. Biotechnol. Bioeng. 11, 449–466 (1969).Google Scholar
  9. Gatellier, C., Glikmans, G., Ballerini, D.: Kinetics of alkane oxidation and assimilation by yeasts. 154th Meeting of the American Chemical Society, Chicago 1967.Google Scholar
  10. Goma, G., Durand, G.: Dosage de substances non miscibles par chromatographie en phase gazeuse: hydrocarbures dans l'eau. Water Res. 5, 545–552 (1971).Google Scholar
  11. Goma, G., Pareilleux, A., Durand, G.: Etude de l'ordre de la réaction de dégradation d'un n-alcane par Candida lipolytica. C.R. Acad. Sci. (Paris) 273, 109–112 (1971).Google Scholar
  12. Iguchi, I., Takeda, I., Ohsawa, H.: Emulsifying factor of hydrocarbon produced by a hydrocarbon assimilating yeast. Agr. Biol. Chem. 33, 1657–1658 (1969).Google Scholar
  13. Johnson, M. J.: Utilization of hydrocarbons by microorganisms Chem. and Ind. 36, 1532–1537 (1964).Google Scholar
  14. Katinger, H., Meyrath, J.: Factors influencing yeast growth in hydrocarbon substrates with special regard to the degree of emulsification. Antonie v. Leeuwenhoek 35, Suppl.: Yeast symposium, F25-F26 (1969).Google Scholar
  15. Laine, B.: Réalisation industrielle d'une fermentation de levures aliments. Journée Etude Microbiol. Pétrole. Paris 1970.Google Scholar
  16. La Rivière, J. W. M.: The production of surface active compounds by microorganisms and its possible significance in oil recovery. I. Some general observations on the change of surface tension in microbial cultures. Antonie v. Leeuwenhoek 21, 1–8 (1955).Google Scholar
  17. Ludvik, J., Munk, V., Dostalek, M.: Ultrastructure changes in the yeast Candida lipolytica caused by penetration of hydrocarbons into the cell. Experientia (Basel) 24, 1066–1068 (1968).Google Scholar
  18. Mimura, M., Watanabe, S., Takeda, I.: Biochemical analysis of hydrocarbon fermentation. III. Analysis of emulsification phenomena. J. Ferment. Technol. 49, 255–271 (1971).Google Scholar
  19. Mizumo, M., Shimojima, Y., Iguchi, T.: Fatty acid composition of hydrocarbon assimilation yeast. Agr. Biol. Chem. 30, 506–510 (1966).Google Scholar
  20. Mudd, S., Mudd, E. B. H.: Penetration of bacteria through capillary spaces. IV. A kinetic mechanism in interfaces. J. exp. Med. 40, 633–645 (1924).Google Scholar
  21. Munk, V., Volfova, O., Kotyk, A., Dostalek, M.: Hydrocarbon fermentation into the yeast cell. Antonie v. Leeuwenhoek 35, Suppl: Yeast symposium, F23 (1969).Google Scholar
  22. Nyns, E. J., Wiaux, A. L.: Biologie des hydrocarbures 1966–1968. Agricultura (Louvain) 17, 3–56 (1969).Google Scholar
  23. Pareilleux, A., Goma, G.: Evolution de paramètres physico-chimiques du milieu au cours d'une fermentation sur hydrocarbures. 12ème journées de l'hydraulique. Paris 1972.Google Scholar
  24. Prokop, A., Erickson, E., Paredes-Lopez, O.: Growth models of cultures with two liquid phases. V. Substrate dissolved in dispersed phase. Experimental observations. Biotechnol. Bioeng. 13, 241–256 (1971).Google Scholar
  25. Raymond, R. L., Davis, J. B.: n-alkane utilization and lipid formation by a Nocardia. Appl. Microbiol. 8, 329–247 (1960).Google Scholar
  26. Reed, G. B., Rice, C. E.: The behaviour of acid-fast bacteria in oil and water systems. J. Bact. 22, 239–247 (1931).Google Scholar
  27. Saz, A. K.: The effect of long-chain compounds, particulary hydrocarbons, on the metabolism of tubercle bacilli. Arch. Biochem. 22, 195–203 (1949).Google Scholar
  28. Tanaka, A., Fukui, S.: Studies on the utilization of hydrocarbons by microorganisms. III. Substrate specificity of yeast in hydrocarbon fermentation. J. Ferment. Technol. 46, 214–224 (1968).Google Scholar
  29. Yoshida, F., Yamane, T., Yagi, H.: Mechanism of uptake of liquid hydrocarbons by microorganisms. Biotechnol. Bioeng. 13, 215–218 (1971).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Gérard Goma
    • 1
  • Alain Pareilleux
    • 1
  • Gilbert Durand
    • 1
  1. 1.Laboratoire de Génie BiochimiqueInstitut National des Sciences AppliquéesToulouseFrance

Personalised recommendations