Advertisement

Archiv für Mikrobiologie

, Volume 88, Issue 2, pp 87–96 | Cite as

Assimilation of aliphatic hydrocarbons by Candida tropicalis

II. Fatty acid profiles from cells grown on substrates of different chain length
  • H. Hug
  • A. Fiechter
Article

Summary

  1. 1.

    Several methods for the extraction of lipids from Candida yeast grown on n-alkanes were compared and evaluated. Special attention was paid to the completeness of extraction and to protect the unsaturated fractions from oxydation.

     
  2. 2.

    Significant alteration of the fatty acid composition during batch growth on hexadecane was observed. These changes make it necessary to harvest cells in a well defined state of the growing cell population.

     
  3. 3.

    If alkanes of chain length from C12 to C17 served as sole source of carbon fatty acids with corresponding chain length predominated. Even numbered alkane chains led to fatty acid profiles containing about 95% even numbered acids. Using odd numbered alkanes as substrates, the cells contained about 50% odd numbered fatty acids.

     
  4. 4.

    Cells grown on glucose and acetate media were also examined. Inhibition of de novo synthesis of fatty acids is stronger when the chain length of alkane substrates increases.

     

Keywords

Hydrocarbon Assimilation Alkane Fatty Acid Composition Chain Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballerini, D.: Etude descriptive et cinétique de la croissance d'une levure Candida lipolytica à partir d'alcanes normaux. Thèse, Université de Paris 1969.Google Scholar
  2. Davis, J. B.: Microbial incorporation of fatty acids derived from n-alkanes into glycerides and waxes. Appl. Microbiol. 12, 210–214 (1964).Google Scholar
  3. Dunlap, K. R., Perry, J. J.: Effect of substrate on fatty acid compsition of hydrocarbon and ketone-utilizing microorganisms. J. Bact. 96, 318–321 (1968).Google Scholar
  4. Einsele, A., Fiechter, A.: Zum Entwurf von Bio-Reaktoren für die mikrobielle Oxydation von Kohlenwasserstoffen. Path. et Microbiol. (Basel) 34, 149–150 (1969).Google Scholar
  5. Einsele, A., Fiechter, A., Knöpfel, H. P.: Respiratory activity of Candida tropicalis during growth on hexadecane and on glucose. Arch. Mikrobiol. 82, 247–253 (1972).Google Scholar
  6. Folch, Y., Less, M., Stanley, G. H. S.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226, 497–509 (1957).Google Scholar
  7. Killinger, A.: Der Abbau von Undecan und die Assimilation von n-Alkanen durch ein marines Bakterium. Diss., Universität Hamburg 1969.Google Scholar
  8. Klug, M. J., Markovetz, A. J.: Degradation of hydrocarbons by members of the genus Candida. II. Oxydation of n-alkanes and l-alkanes by Candida lipolytica. J. Bact. 93, 1847–1852 (1967).Google Scholar
  9. Makula, R., Finnerty, W. R.: Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes. J. Bact. 95, 2102–2107 (1968).Google Scholar
  10. Miller, T. L., Johnson, M. J.: Utilization of normal alkanes by yeasts. Biotechnol. Bioeng. 8, 549–565 (1966).Google Scholar
  11. Mizuno, M., Shimojima, Y., Iguchi, T., Takeda, I., Senoh, S.: Fatty acid composition of hydrocarbon-assimilating yeast. Agr. Biol. Chem. 30, 506–510 (1966).Google Scholar
  12. Pelechowa, J., Krumphanzl, V., Uher, J., Dyr, J.: Assimilation of hydrocarbons. I. Proportion of fatty acids in the cell fat. Folia microbiol. (Praha) 16, 103–109 (1971).Google Scholar
  13. Reichert, R.: In: Die Hefen in der Wissenschaft, Vol. I, p. 474, F. Reiff, R. Kantzmann, H. Lüers, and M. Lindemann, eds. Nürnberg: H. Carl 1960.Google Scholar
  14. Suomalainen, H., Nurminen, T.: The lipid composition of cell wall and plasma membrane of Baker's yeast. Chem. Phys. Lipids 4, 247–256 (1970).Google Scholar
  15. Vorbeck, M. L., Marinetti, G. V.: Separation of glycosyl diglycerides from phosphatides using silic acid column chromatography. J. Lipid Res. 6, 2–6 (1965).Google Scholar
  16. Wagner, F., Kleeman, Th., Zahn, W.: Microbial transformation of hydrocarbons. II. Growth constants and cell composition of microbial cells derived from n-alkanes. Biotechnol. Bioeng. 11, 393–408 (1969).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. Hug
    • 1
  • A. Fiechter
    • 1
  1. 1.Institute of MicrobiologySwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations