Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The influence of insulin on the lipids in the pulmonary artery and the lungs of severely diabetic rats

A histochemical and chemical study

  • 56 Accesses

  • 2 Citations


The effect of insulin on the triglyceride deposits found in the pulmonary artery branches of streptozotocin-diabetic rats was investigated by treating the animals for two, five, nine or 14 days with insulin (3–8 units/day). Histochemical analysis showed that the triglyceride deposits in the pulmonary artery developed within three to four days after the induction of diabetes, but were not present in any animals five days from the initiation of insulin therapy. Plasma triglycerides, non-esterified fatty acids, phospholipid and total cholesterol concentrations were within the normal range within two days of the inception of insulin therapy and random plasma glucose levels were normal within five days. Analysis of lung lipids showed that after 14 days of insulin treatment the decreased content of phospholipids and the increased content of non-esterified fatty acids found in diabetic rats were also normalized. These findings suggest that insulin has an important role in the regulation of lipid metabolism in the pulmonary artery and lung tissue in the diabetic state.


  1. 1.

    Parkes, A.P., Mahler, R.F.: The nature of pig arterial lipase. Atherosclerosis 20, 281–286 (1974)

  2. 2.

    Dicorleto, P.E., Zilversmit, D.B.: Lipoprotein lipase activity in bovine aorta. Proc. Soc. Exp. Biol. Med. 148, 1101–1105 (1975)

  3. 3.

    Mahler, R.: The effect of diabetes and insulin on biochemical reactions of the arterial wall. Acta Diabetol. Lat. 8, 68–83 (1971)

  4. 4.

    Chmelar, M., Chmelarová, M.: Lipolytic effect of insulin and other hormones in vitro in aortic tissue of experimental animals. Experientia 24, 1118–1119 (1968)

  5. 5.

    Reinilä, A., Koivisto, V.A., Åkerblom, H.K.: Lipids in the pulmonary artery and the lungs of severely diabetic rats: a histochemical and chemical study. Diabetologia 13, 305–310 (1977)

  6. 6.

    Moxley, M.A., Longmore, W.J.: Studies on the effects of alloxan and streptozotocin induced diabetes on lipid metabolism in the isolated perfused rat lung. Life Sci. 17, 921–926 (1975)

  7. 7.

    Moxley, M.A., Longmore, W.J.: Effect of experimental diabetes and insulin on lipid metabolism in the isolated perfused rat lung. Biochim. Biophys. Acta 488, 218–224 (1977)

  8. 8.

    Rönning, O., Isotupa, K.: A method for intracardial injections on rats. Anat. Rec. 158, 245–248 (1967)

  9. 9.

    Mallory, F.B.: Pathological technique, p. 118. Philadelphia: W. B. Saunders 1942

  10. 10.

    Holczinger, L.: Histochemischer Nachweis freier Fettsäuren. Acta Histochem. (Jena) 8, 167–175 (1959)

  11. 11.

    Adams, C.W.M., Abdulla, Y.H., Bayliss, O.B., Weller, O.R.: Histochemical detection of triglyceride esters with specific upases and calcium lead sulphide technique. J. Histochem. Cytochem. 14, 385–395 (1966)

  12. 12.

    Weber, A.F., Phillips, M.G., Bell, J.T.: An improved method for the Schulte cholesterol test. J. Histochem. Cytochem. 4, 308–309 (1956)

  13. 13.

    Adams, C.W.M.: Osmium tetroxide-onaphthylamine (OTAN) method for phospholipids, cholesterol esters and triglyceride esters. In: Neurohistochemistry. Adams, C.W.M. (Ed.), pp. 55–56. Amsterdam: Elsevier 1965

  14. 14.

    Folch, J., Lees, M., Sloane Stanley, G.H.: A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

  15. 15.

    Sperry, W.M.: Gravimetric determination of total lipids in blood serum or plasma. In: Standard methods of clinical chemistry. Seligson, D. (Ed.), 4th ed., pp. 173–182. New York: Academic Press 1963

  16. 16.

    Dole, V.P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. Clin. Invest. 35, 150–154 (1956)

  17. 17.

    Eggstein, H., Kreutz, F.H.: Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. Klin. Wochenschr. 44, 262–267 (1966)

  18. 18.

    Wybenga, D.R., Pileggi, V.J., Distine, P.H., Di Giorgio, J.: Direct manual determination of serum total cholesterol with a single stable reagent. Clin. Chem. 16, 980–984 (1970)

  19. 19.

    Zilversmit, D.B., Devis, A.K.: Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med. 35, 155–157 (1950)

  20. 20.

    Carrol, J.J., Smith, N., Babson, A.L.: A colorimetric serum glucose determination using hexokinase and glucose-6-phosphate dehydrogenase. Biochem. Med. 4, 171–180 (1970)

  21. 21.

    Coburn, H.J., Carrol, J.J.: An improved manual and automated colorimetric serum glucose determination using hexokinase and glucose-6-phosphate dehydrogenase. Clin. Chem. 19, 127–130 (1973)

  22. 22.

    Reaven, E.P., Reaven, G.M.: Mechanisms for development of diabetic hypertriglyceridemia in streptozotocin-treated rats. Effect of diet and duration of insulin deficiency. J. Clin. Invest. 54, 1167–1178 (1974)

  23. 23.

    Nikkilä, E.A., Huttunen, J.K., Ehnholm, C.: Postheparin plasma lipoprotein lipase and hepatic lipase in diabetes mellitus. Relationship to plasma triglyceride metabolism. Diabetes 26, 11–21 (1977)

  24. 24.

    Parker, F., Bagdade, J.D., Odland, G.F., Bierman, E.L.: Evidence for the chylomicron origin of lipids accumulating in diabetic eruptive xanthomas: a correlative lipid biochemical, histochemical and electron microscopic study. J. Clin. Invest. 49, 2172–2187 (1970)

  25. 25.

    Nikkilä, E.A., Hormila, P.: Coronary heart disease and its risk factors among chronic insulin dependent diabetics. Diabetologia 12, 412–413 (1976)

  26. 26.

    Nikkilä, E.A., Hormila, P., Huttunen, J.K.: Increase in high density lipoprotein levels and of postheparin plasma lipoprotein lipase activity in insulin treated diabetics. Circulation 56, III-23 (1977)

  27. 27.

    Stubbs, W.A., Morgan, I., Lloyd, B., Alberti, K.G.M.M.: The effect of insulin on lung metabolism in the rat. Clin. Endocrinol. (Oxf.) 7, 181–184 (1977)

  28. 28.

    Morishige, W.K., Uetake, C-A., Greenwood, F.C., Akaka, J.: Pulmonary insulin responsivity: In vivo effects of insulin on the diabetic rat lung and specific insulin binding to lung receptors in normal rats. Endocrinology 100, 1710–1722 (1977)

  29. 29.

    Stubbs, W.A., Stubbs, S.M.: Hyperinsulinism, diabetes mellitus, and respiratory distress of the newborn: A common link? Lancet 1978 I, 308–309

  30. 30.

    Schuyler, M.R., Niewoehner, D.E., Inkley, S.R., Kohn, R.: Abnormal lung elasticity in juvenile diabetes mellitus. Am. Rev. Respir. Dis. 113, 37–41 (1976)

  31. 31.

    Schernthaner, G., Haber, P., Kummer, F., Ludwig, H.: Lung elasticity in juvenile-onset diabetes mellitus. Am. Rev. Respir. Dis. 116, 544–546 (1977)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reinilä, A., Åkerblom, H.K. & Koivisto, V.A. The influence of insulin on the lipids in the pulmonary artery and the lungs of severely diabetic rats. Diabetologia 16, 59–64 (1979). https://doi.org/10.1007/BF00423152

Download citation

Key words

  • Diabetes
  • insulin
  • non-esterified fatty acids
  • lipid metabolism
  • lung
  • phospholipids
  • pulmonary artery
  • rat
  • streptozotocin
  • triglycerides