Archives of Microbiology

, Volume 149, Issue 1, pp 57–61 | Cite as

Nickel uptake in Rhodopseudomonas capsulata

  • S. Takakuwa
Original Papers


Nickel uptake system was investigated with a wild-type cell of Rhodopseudomonas capsulata and two mutants lacking uptake hydrogenase (Hup-). Wild type cells grown photoheterotrophically incorporated 63Ni2+ by a high affinity system. The uptake system had a pH of 7.0 and a temperature optimum of 28°C. Both Mg2+ and Co2+ ions severely repressed the uptake of Ni2+. Nickel transport was also inhibited by metabolic inhibitors including cyanide, azide, 2,4-dinitrophenol and m-chlorophenyl carbonylcyanidehydrazone. These data imply that Ni2+ uptake system occurs by the energy-linked system for Mg2+ transport. The intracellular distribution of 63Ni2+ in Hup- cells showed the same pattern as that of wild-type cells, indicate that the Hup- strains have no deficiency in Ni2+ transport.

Key words

Nickel uptake Hup- mutant Phototroph Rhodopseudomonas capsulata/Rhodobacter capsulatus 



m-chlorophenyl carbonylcyanidehydrazone


N-2-hydroxylethylpiperazine-N-2-ethane-sulfuric acid




tetramethylammonium hydroxide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albracht SPJ, Kalkman ML, Slater EC (1983) Magnetic interaction of nickel(III) and iron sulfur cluster in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 724:309–316Google Scholar
  2. Campbell PM, Smith GD (1986) Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Arch Biochem Biophys 244:470–477Google Scholar
  3. Christians S, Kaltwasser H (1986) Nickel content of urease from Bacillus pasteurii. Arch Microbiol 145:51–55Google Scholar
  4. Colbeau A, Vignais PM (1983) The membrane bound hydrogenase of Rhodopseudomonas capsulata is inducible and contains nickel. Biochim Biophys Acta 748:128–138Google Scholar
  5. Colbeau A, Charbert J, Vignais PM (1983) Purification, molecular properties and localization in the membrane of Rhodopseudomonas capsulata. Biochim Biophys Acta 748:116–127Google Scholar
  6. Colbeau A, Godfroy A, Vignais PM (1986) Cloning of DNA carrying hydrogenase genes of Rhodopseudomonas capsulata. Biochimie 68:147–155Google Scholar
  7. Diekert G, Graf EG, Thauer RK (1979) Nickel requirement for carbon dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:177–120Google Scholar
  8. Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464Google Scholar
  9. Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC a metalloenzyme. A simple biological role for nickel? J Amer Chem Sci 97:4131–4133Google Scholar
  10. Drake HL, Hu S-I, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J Biol Chem 255:7174–7180Google Scholar
  11. Eidels L, Priess L (1970) Carbohydrate metabolism in Rhodopseudomonas capsulata: Enzyme titers, glucose metabolism, and polymer synthesis. Arch Biochem Biophys 140:75–89Google Scholar
  12. Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: Chromatophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79:3707–3710Google Scholar
  13. Friedrich B, Heine E, Finck A, Friedrich CG (1981) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 145:1144–1149Google Scholar
  14. Fuhrman C-F, Rothstein A (1968) The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim Biophys Acta 163:325–330Google Scholar
  15. Genthner BR, Wall JD (1985) Ammonium uptake in Rhodopseudomonas capsulata. Arch Microbiol 141:219–224Google Scholar
  16. Good NE, Wignet GD, Witner W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477Google Scholar
  17. Graf E-G, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169Google Scholar
  18. Hammel KE, Cornwell KL, Diekert GB, Thauer RK (1984) Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J Bacteriol 157:975–978Google Scholar
  19. Hutner SH (1946) Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J Bacteriol 52:213–221Google Scholar
  20. Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the photosynthetic “purple nonsulfur bacteria”. Internat System Bacteriol 34:340–343Google Scholar
  21. Jarrell KF, Sprott GD (1982) Nickel transport in Methanobacterium bryantii. J Bacteriol 151:1195–1203Google Scholar
  22. Jasper P (1978) Potassium transport system of Rhodopseudomonas capsulata. J Bacteriol 133:1314–1322Google Scholar
  23. Jasper P, Silver S (1978) Divalent cation transport systems of Rhodopseudomonas capsulata. J Bacteriol 133:1322–1328Google Scholar
  24. Kaltwasser K, Frings W (1980) Transport and metabolism of nickel in microorganisms. In: Nriagu JO (ed) Nickel in the environment. John Wiley and Sons, New York, pp 463–491Google Scholar
  25. Kojima S, Furukawa M (1985) Liquid scintillation counting of low activity 63Ni. J Radio Anal Nucl Chem Lett 95:323–330Google Scholar
  26. Krueger H-J, Huynch BH, Ljundahl PO, Xavier AVA, DerVartanian DV, Moura I, Peck HD, Teixeria M, Moura JJG, LeGall J (1982) Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem 257:14620–14623Google Scholar
  27. Krzycki JA, Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol 158:231–237Google Scholar
  28. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  29. Nakamura Y, Someya J, Suzuki T (1985) Nickel requirement of oxygen-resistant hydrogen bacterium, Xanthobacter autotrophicus strain Y38. Agric Biol Chem 49:1711–1718Google Scholar
  30. Nakano H, Takenishi S, Watanabe Y (1984) Purification and properties of urease from Brevibacterium ammoniagenes. Agric Biol Chem 48:1495–1504Google Scholar
  31. Nelson DL, Kennedy EP (1971) Magnesium transport in Escherichia coli. J Biol Chem 246:3042–3049Google Scholar
  32. Park ME, Wong BB, Lusk JE (1976) Mutants in three genes affecting transport of magnesium in Escherichia coli: Genetics and physiology. J Bacteriol 126:1096–1103Google Scholar
  33. Partridge DCP, Yates MG (1982) Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Biochem J 204:339–344Google Scholar
  34. Polacco JC, Havir EA (1979) Comparisons of soybean urease isolated from seed and tissue culture. J Biol Chem 154:1707–1715Google Scholar
  35. Scribner H, Eisenstadt E, Silver S (1974) Magnesium transport in Bacillus subtilis W23 during growth and sporulation. J Bacteriol 117:1224–1230Google Scholar
  36. Segel IH (1976) Biochemical calculations, 2nd edn. John Wiley and Sons Inc, New York London, pp 278–279Google Scholar
  37. Silver S, Jasper P (1977) Magnesium transport in microorganisms. In: Weiberg ED (ed) Microorganisms and minerals. Marcel Dekker, New York Basel, pp 105–149Google Scholar
  38. Skaar H, Rystad B, Jensen A (1974) The uptake of 63Ni by the diatom Phaeodactylum tricornutum. Physiol Plant 32:353–358Google Scholar
  39. Stults LW, O'Hara EB, Maier RJ (1984) Nickel is a component of hydrogenase in Rhizobium japonicum. J Bacteriol 159:153–158Google Scholar
  40. Tabillion R, Kaltwasser H (1977) Energieabhängige 63Ni2+-Aufnahme bei Alcaligenes eutrophus Stamm H1 and H16. Arch Microbiol 113:145–151Google Scholar
  41. Tabillion R, Weber F, Kaltwasser H (1980) Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria. Arch Microbiol 124:131–136Google Scholar
  42. Takakuwa S (1985) Urease in Rhodopseudomonas capsulata. Proceeding of Plant and Cell Physiology held in Miyazaki, Japan. p 203Google Scholar
  43. Takakuwa S, Wall JD (1981) Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 12:359–363Google Scholar
  44. Takakuwa S, Odom JM, Wall JD (1983) Hydrogen uptake deficient mutants of Rhodopseudomonas capsulata. Arch Microbiol 136:20–25Google Scholar
  45. Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216Google Scholar
  46. Webb M (1970) Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacterium. Biochim Biophys. Acta 222:428–439Google Scholar
  47. Yates MG, Robson RL (1985) Mutants of Azotobacter chroococcum defective in hydrogenase activity. J Gen Microbiol 131:1459–146Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. Takakuwa
    • 1
  1. 1.Department of Natural ScienceKyoto Women's UniversityKyotoJapan

Personalised recommendations