Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Nickel uptake in Rhodopseudomonas capsulata

  • 25 Accesses

  • 13 Citations

Abstract

Nickel uptake system was investigated with a wild-type cell of Rhodopseudomonas capsulata and two mutants lacking uptake hydrogenase (Hup-). Wild type cells grown photoheterotrophically incorporated 63Ni2+ by a high affinity system. The uptake system had a pH of 7.0 and a temperature optimum of 28°C. Both Mg2+ and Co2+ ions severely repressed the uptake of Ni2+. Nickel transport was also inhibited by metabolic inhibitors including cyanide, azide, 2,4-dinitrophenol and m-chlorophenyl carbonylcyanidehydrazone. These data imply that Ni2+ uptake system occurs by the energy-linked system for Mg2+ transport. The intracellular distribution of 63Ni2+ in Hup- cells showed the same pattern as that of wild-type cells, indicate that the Hup- strains have no deficiency in Ni2+ transport.

This is a preview of subscription content, log in to check access.

Abbreviations

CCCP:

m-chlorophenyl carbonylcyanidehydrazone

HEPES:

N-2-hydroxylethylpiperazine-N-2-ethane-sulfuric acid

HOQNO:

2-n-nonly-4-hydroxyquinoline-N-oxide

TMA:

tetramethylammonium hydroxide

References

  1. Albracht SPJ, Kalkman ML, Slater EC (1983) Magnetic interaction of nickel(III) and iron sulfur cluster in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 724:309–316

  2. Campbell PM, Smith GD (1986) Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Arch Biochem Biophys 244:470–477

  3. Christians S, Kaltwasser H (1986) Nickel content of urease from Bacillus pasteurii. Arch Microbiol 145:51–55

  4. Colbeau A, Vignais PM (1983) The membrane bound hydrogenase of Rhodopseudomonas capsulata is inducible and contains nickel. Biochim Biophys Acta 748:128–138

  5. Colbeau A, Charbert J, Vignais PM (1983) Purification, molecular properties and localization in the membrane of Rhodopseudomonas capsulata. Biochim Biophys Acta 748:116–127

  6. Colbeau A, Godfroy A, Vignais PM (1986) Cloning of DNA carrying hydrogenase genes of Rhodopseudomonas capsulata. Biochimie 68:147–155

  7. Diekert G, Graf EG, Thauer RK (1979) Nickel requirement for carbon dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:177–120

  8. Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464

  9. Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5) a metalloenzyme. A simple biological role for nickel? J Amer Chem Sci 97:4131–4133

  10. Drake HL, Hu S-I, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J Biol Chem 255:7174–7180

  11. Eidels L, Priess L (1970) Carbohydrate metabolism in Rhodopseudomonas capsulata: Enzyme titers, glucose metabolism, and polymer synthesis. Arch Biochem Biophys 140:75–89

  12. Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: Chromatophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79:3707–3710

  13. Friedrich B, Heine E, Finck A, Friedrich CG (1981) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 145:1144–1149

  14. Fuhrman C-F, Rothstein A (1968) The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim Biophys Acta 163:325–330

  15. Genthner BR, Wall JD (1985) Ammonium uptake in Rhodopseudomonas capsulata. Arch Microbiol 141:219–224

  16. Good NE, Wignet GD, Witner W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

  17. Graf E-G, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169

  18. Hammel KE, Cornwell KL, Diekert GB, Thauer RK (1984) Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J Bacteriol 157:975–978

  19. Hutner SH (1946) Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J Bacteriol 52:213–221

  20. Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the photosynthetic “purple nonsulfur bacteria”. Internat System Bacteriol 34:340–343

  21. Jarrell KF, Sprott GD (1982) Nickel transport in Methanobacterium bryantii. J Bacteriol 151:1195–1203

  22. Jasper P (1978) Potassium transport system of Rhodopseudomonas capsulata. J Bacteriol 133:1314–1322

  23. Jasper P, Silver S (1978) Divalent cation transport systems of Rhodopseudomonas capsulata. J Bacteriol 133:1322–1328

  24. Kaltwasser K, Frings W (1980) Transport and metabolism of nickel in microorganisms. In: Nriagu JO (ed) Nickel in the environment. John Wiley and Sons, New York, pp 463–491

  25. Kojima S, Furukawa M (1985) Liquid scintillation counting of low activity 63Ni. J Radio Anal Nucl Chem Lett 95:323–330

  26. Krueger H-J, Huynch BH, Ljundahl PO, Xavier AVA, DerVartanian DV, Moura I, Peck HD, Teixeria M, Moura JJG, LeGall J (1982) Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem 257:14620–14623

  27. Krzycki JA, Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol 158:231–237

  28. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

  29. Nakamura Y, Someya J, Suzuki T (1985) Nickel requirement of oxygen-resistant hydrogen bacterium, Xanthobacter autotrophicus strain Y38. Agric Biol Chem 49:1711–1718

  30. Nakano H, Takenishi S, Watanabe Y (1984) Purification and properties of urease from Brevibacterium ammoniagenes. Agric Biol Chem 48:1495–1504

  31. Nelson DL, Kennedy EP (1971) Magnesium transport in Escherichia coli. J Biol Chem 246:3042–3049

  32. Park ME, Wong BB, Lusk JE (1976) Mutants in three genes affecting transport of magnesium in Escherichia coli: Genetics and physiology. J Bacteriol 126:1096–1103

  33. Partridge DCP, Yates MG (1982) Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Biochem J 204:339–344

  34. Polacco JC, Havir EA (1979) Comparisons of soybean urease isolated from seed and tissue culture. J Biol Chem 154:1707–1715

  35. Scribner H, Eisenstadt E, Silver S (1974) Magnesium transport in Bacillus subtilis W23 during growth and sporulation. J Bacteriol 117:1224–1230

  36. Segel IH (1976) Biochemical calculations, 2nd edn. John Wiley and Sons Inc, New York London, pp 278–279

  37. Silver S, Jasper P (1977) Magnesium transport in microorganisms. In: Weiberg ED (ed) Microorganisms and minerals. Marcel Dekker, New York Basel, pp 105–149

  38. Skaar H, Rystad B, Jensen A (1974) The uptake of 63Ni by the diatom Phaeodactylum tricornutum. Physiol Plant 32:353–358

  39. Stults LW, O'Hara EB, Maier RJ (1984) Nickel is a component of hydrogenase in Rhizobium japonicum. J Bacteriol 159:153–158

  40. Tabillion R, Kaltwasser H (1977) Energieabhängige 63Ni2+-Aufnahme bei Alcaligenes eutrophus Stamm H1 and H16. Arch Microbiol 113:145–151

  41. Tabillion R, Weber F, Kaltwasser H (1980) Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria. Arch Microbiol 124:131–136

  42. Takakuwa S (1985) Urease in Rhodopseudomonas capsulata. Proceeding of Plant and Cell Physiology held in Miyazaki, Japan. p 203

  43. Takakuwa S, Wall JD (1981) Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 12:359–363

  44. Takakuwa S, Odom JM, Wall JD (1983) Hydrogen uptake deficient mutants of Rhodopseudomonas capsulata. Arch Microbiol 136:20–25

  45. Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216

  46. Webb M (1970) Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacterium. Biochim Biophys. Acta 222:428–439

  47. Yates MG, Robson RL (1985) Mutants of Azotobacter chroococcum defective in hydrogenase activity. J Gen Microbiol 131:1459–146

Download references

Author information

Correspondence to S. Takakuwa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takakuwa, S. Nickel uptake in Rhodopseudomonas capsulata . Arch. Microbiol. 149, 57–61 (1987). https://doi.org/10.1007/BF00423137

Download citation

Key words

  • Nickel uptake
  • Hup- mutant
  • Phototroph
  • Rhodopseudomonas capsulata/Rhodobacter capsulatus