Advertisement

Molecular and Cellular Biochemistry

, Volume 43, Issue 2, pp 65–80 | Cite as

Dopamine receptors in canine caudate nucleus

  • Hiroo Maeno
Article

Summary

Physiological, pharmacological, histochemical and biochemical studies indicate that dopamine receptors are heterogenous in the, central nervous system with each individual functions. This review describes pharmacological and biochemical characteristics of dopamine receptors, particularly in canine caudate nucleus, which have been studied in our laboratory with a brief comparison to the current studies by other workers in similar research fields.

Two distinct dopamine receptors have been characterized by means of [3H]dopamine binding to the synaptic membranes from canine caudate nucleus. One of the receptors with a Kd of about 3 μM for dopamine may be associated with adenylate cyclase and referred to as D, receptor. The other receptor with a Kd of about 10 nM for dopamine is independent of adenylate cyclase and referred to as D2. A photochemical irreversible association of [3H]dopamine with the membraneous receptors makes it possible to separate D1 and D2 receptors from one another by gel filtration on a Sephadex G-200 column after solubilization with Lubrol PX. On the basis of selective inhibition of [3H]dopamine binding to D1 and D2 receptors, dopamine antagonists can be classified into three classes: D1-selective (YM-09151-2), D2-selective (sulpiride) and nonselective (haloperidol, chlorpromazine). Effects of these typical antagonists on the metabolism of rat brain dopamine suggest that D1 receptor is more closely associated with the neuroleptic-induced increase in dopamine turnover. Studies with 28 benzamide derivatives and some classical neuroleptics reveal that apomorphine-induced stereotypy displays a greater association with D1 than with D2 receptors.

Dopamine-sensitive adenylate cyclase in canine caudate nucleus can be solubilized with Lubrol PX in a sensitive form to either dopamine, Gpp(NH)p or fluoride. Sephadex G-200 gel filtration separates adenylate cyclase from D1 receptors with a concomitant loss of dopamine sensitivity. Addition of the D1 receptor fraction to the adenylate cyclase restores the responsiveness to dopamine. The solubilized dopamine-unresponsive adenylate cyclase can be further separated into two distinct fractions by a batch-wise treatment with GTP-sepharose: a catalytic unit which does not respond to fluoride, and a guanine nucleotide regulatory protein. The regulatory protein confers distinct responsiveness to Gpp(NH)p and fluoride upon adenylate cyclase. These results indicate that dopamine-sensitive adenylate cyclase is composed of at least three distinct units; D1 receptor, guanine nucleotide regulatory protein and adenylate cyclase.

Keywords

Dopamine Haloperidol Dopamine Receptor Adenylate Cyclase Sulpiride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlsson, A., Falck, B. & Hillarp, N.-A., 1962. Acta Physiol. Scand. Supp. 196: 1–27.Google Scholar
  2. 2.
    Lindvall, O., Bjorkland, A., 1978. Handbook of Psychopharmacology 9 (Iversen, L. L., Iversen, S. D. & Snyder, S. H., eds.) Plenum Press, New York, pp. 139–231.Google Scholar
  3. 3.
    Costall, B. & Naylor, R. J., 1976. Eur. J. Pharmacol. 35: 161–168.Google Scholar
  4. 4.
    Di chiara, G., Porceddu, M. L., Vargin, L., Argiolas, A. & Gessa, G. L., 1976. Nature 264: 564–567.Google Scholar
  5. 5.
    Iversen, S. D., 1977. Handbook of Psychopharmacology 8 (Iversen, L. L., Iversen, S. D. & Snyder, S. H., eds.) Plenum Press, New York, pp. 333–384.Google Scholar
  6. 6.
    Meltzer, H. Y., So, R., Miller, R. J. & Fang, V. S., 1979. Life Sci. 25: 573–584.Google Scholar
  7. 7.
    Bernheimer, H., Birkmayer, W., Horynkiewicz, O., Jellinger, K. & Seitelberger, F., 1973. J. Neurol. Sci. 20: 415–455.Google Scholar
  8. 8.
    Horynkiewicz, O., 1973. Br. Med. Bull. 29: 172–178.Google Scholar
  9. 9.
    Rundrup, A. & Munkvad, I., 1967. Psychopharmacologia 11: 300–310.Google Scholar
  10. 10.
    Horynkiewicz, O., 1977. Ann. Rev. Pharmacol. Toxicol. 17: 545–559.Google Scholar
  11. 11.
    Seeman, P., Chau-wong, M., Tedesco, J. & Wong, K., 1975. Proc. Nat. Acad. Sci. U.S.A. 72: 4376–4380.Google Scholar
  12. 12.
    Creese, I., Burt, D. R. & Snyder, S. H., 1976. Science 192: 481–483.Google Scholar
  13. 13.
    Owen, F., Cross, A. J., Crow, T. J., Longden, A., Poulter, M. & Riley, G. J., 1978. Lancet 2: 223–226.Google Scholar
  14. 14.
    Crow, T. J., Johnstone, E. C., Longden, A. & Owen, F., 1978. Adv. Biochem. Psychopharmacol. 19 (Roberts, P. J., Woodruff, G. N. & Iversen, L. L., eds.) pp. 301–309.Google Scholar
  15. 15.
    Cools, A. R. & van Rossum, J. M., 1976. Psychopharmacologia 45: 243–254.Google Scholar
  16. 16.
    van Rossum, J. M., 1978. Fed. Proc. 37: 2415–2421.Google Scholar
  17. 17.
    Spano, P. F., Govoni, S. & Trabucchi, M., 1978. Adv. Biochem. Psychopharmacol. 19 (Roberts, P. J., Woodruff, G. N. & Iversen, L. L., eds.) pp. 155–165.Google Scholar
  18. 18.
    Kebabian, J. W. & Calne, D. B., 1979. Nature 277: 93–96.Google Scholar
  19. 19.
    Cools, A. R. & van Rossum, J. M., 1980. Life Sci. 27: 1237–1253.Google Scholar
  20. 20.
    Costall, B. & Naylor, R. J., 1981. Life Sci. 28: 215–229.Google Scholar
  21. 21.
    Bloom, F. E., Costa, E. & Salmoiraghi, G. C., 1965. J. Pharmacol. exp. Ther. 150: 244–252.Google Scholar
  22. 22.
    Felz, P., 1970. J. Physiol. (Paris) 62: 151.Google Scholar
  23. 23.
    McLennam, H. & York, D. H., 1967. J. Physiol. (Lond.) 189: 393–402.Google Scholar
  24. 24.
    York, D. H., 1975. Handbook of Psychopharmacol. 6 (Iversen, L. L., Iversen, S. D. & Snyder, S. H., eds.) Plenum Press, New York, pp. 23–61.Google Scholar
  25. 25.
    Libet, B., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 541–546.Google Scholar
  26. 26.
    Struyker-Boudier, H. J., Gielen, W., Cools, A. R. & van Rossum, J. M., 1974. Arch. Intern. Pharmacodyn. 209: 324–331.Google Scholar
  27. 27.
    Groves, P. M., Wilson, C. J., Young, S. J. & Rebec, G. V., 1975. Science 190: 522–529.Google Scholar
  28. 28.
    Costa, E., Cheney, D. L., Mao, C. C. & Moroni, F., 1978. Fed. Proc. 37: 2408–2414.Google Scholar
  29. 29.
    Creese, I. & Iversen, S. D., 1974. Psychopharmacologia 39: 345–357.Google Scholar
  30. 30.
    Farnebo, L.-O. & Hamberger, B., 1971. Acta Physiol. Scand. Suppl. 371: 35–44.Google Scholar
  31. 31.
    Walter, J. R. & Roth, R. H., 1976. Neunyn-Schmiedberg's Arch. Pharmacol. 296: 5–14.Google Scholar
  32. 32.
    Christiansen, J. & Squires, R. F., 1974. J. Pharma. Pharmac. 26: 367–369.Google Scholar
  33. 33.
    Carlsson, A., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 439–441.Google Scholar
  34. 34.
    Kebabian, J. W. & Greengard, P., 1971. Science 174: 1346–1349.Google Scholar
  35. 35.
    Kebabian, J. W., Petzold, G. L. & Greengard, P., 1972. Proc. Nat. Acad. Sci. U.S.A. 69: 2145–2149.Google Scholar
  36. 36.
    Garau, L., Govani, Stefanini, E., Trabucchi, M. & Spano, P. E., 1978. Life Sci. 23: 1745–1750.Google Scholar
  37. 37.
    Kebabian, J. W., 1978. Adv. Biochem. Psychopharmacol. 19 (Roberts, P. J., Woodruff, G. N. & Iversen, L. L., eds.) Raven Press, New York, pp. 131–154.Google Scholar
  38. 38.
    Carlsson, A., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 439–441.Google Scholar
  39. 39.
    Aghajanian, G. K. & Bunney, B. S., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 433–438.Google Scholar
  40. 40.
    Burt, D. R., Enna, S., Creese, I. & Snyder, S. H., 1975. Proc. Nat. Acad. Sci. U.S.A. 72: 4655–4659.Google Scholar
  41. 41.
    Creese, I., Burt, D. R. & Snyder, S. H., 1975. Life Sci. 17: 993–1002.Google Scholar
  42. 42.
    Sano, K. & Maeno, H., 1976. Biochem. Biophys. Res. Commun. 73: 584–590.Google Scholar
  43. 43.
    Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J. & Wong, K., 1976. Proc. Nat. Acad. Sci. U.S.A. 73: 4354–4358.Google Scholar
  44. 44.
    Roberts, P. J., Woodruff, G. N. & Poat, J. A., 1977. Mol. Pharmacol. 13: 541–547.Google Scholar
  45. 45.
    Creese, I., Schneider, R. & Snyder, S. H., 1977. Eur. J. Pharmacol. 46: 377–381.Google Scholar
  46. 46.
    Nishikori, K., Noshiro, O., Sane, K. & Maeno, H., 1980. J. Biol. Chem. 255: 10909–10915.Google Scholar
  47. 47.
    Burt, D. R., Creese, I. & Snyder, S. H., 1976. Mol. Pharmacol. 12: 800–812.Google Scholar
  48. 48.
    Sano, K., Noshiro, O., Katsuda, K., Nishikori, K. & Maeno, H., 1979. Biochem. Pharmacol. 28: 3617–3627.Google Scholar
  49. 49.
    Creese, I., Prosser, T. & Snyder, S. H., 1978. Life Sci. 23: 495–500.Google Scholar
  50. 50.
    Creese, I., Usdin, T. & Snyder, S. H., 1979. Nature 278: 577–578.Google Scholar
  51. 51.
    Zahniser, R. N. & Molinoff, P., 1978. Nature 275: 453–455.Google Scholar
  52. 52.
    Maguire, M. E., van Ansdale, P. M. & Gilman, A., 1976. Mol. Pharmacol. 12: 335–339.Google Scholar
  53. 53.
    Willams, L. T. & Lefkowitz, R. J., 1977. J. Biol. Chem. 252: 7207–7213.Google Scholar
  54. 54.
    Nishikori, K. & Maeno, H., 1979. Arch. Biochem. Biophys. 195: 505–517.Google Scholar
  55. 55.
    Rodbell, M., Kraus, H. M. J., Pohl, S. L. & Birnbaumer, L., 1971. J. Biol. Chem. 246: 1872–1876.Google Scholar
  56. 56.
    Nyman, M. & Whittaker, V. P., 1963. Biochem. J. 87: 248–255.Google Scholar
  57. 57.
    Dowdall, M. J., Boyne, A. F. & Whittaker, V. P., 1974. Biochem. J. 140: 1–12.Google Scholar
  58. 58.
    Zimmermann, H. & Whittaker, V. P., 1974. J. Neurochem. 22: 435–450.Google Scholar
  59. 59.
    Silinsky, E. M., 1975. J. Physiol. (London). 247: 145–162.Google Scholar
  60. 60.
    White, T. D., 1978. J. Neurochem. 30: 329–336.Google Scholar
  61. 61.
    Pull, I. & McIlwain, H., 1972. Biochem. J. 130: 975–981.Google Scholar
  62. 62.
    Kuroda, Y., 1978. J. Physiol. (Paris) 74: 463–470.Google Scholar
  63. 63.
    van Calker, D., Muller, M. & Hamprecht, B., 1979. J. Neurochem. 33: 999–1005.Google Scholar
  64. 64.
    Usuda, S., Nishikori, K., Noshiro, O., Iwanami, S. & Maeno, H., 1981. Submitted to Biochem. Pharmacol.Google Scholar
  65. 65.
    Usuda, S., Sano, K. & Maeno, H., 1979. Arch. intern. Pharmacodyn. 241: 68–78.Google Scholar
  66. 66.
    Usuda, S., Nishikori, K., Noshiro, O. & Maeno, H., 1981. Psychopharmacology 73: 103–109.Google Scholar
  67. 67.
    Noshiro, O., Nishikori, K., Usuda, S. & Maeno, H., 1980. Folia Pharmacologia Japonica 76: 183p.Google Scholar
  68. 68.
    Yoshioka, M., Kirino, Y., Tamura, Z. & Kwan, T., 1977. Chem. Pharm. Bull. 25: 75–78.Google Scholar
  69. 69.
    Takayanagi, I., Yoshioka, M., Takagi, K. & Tamura, Z., 1976. Europ. J. Pharmacol. 35: 121–125.Google Scholar
  70. 70.
    Queener, S. F., Fleming, J. W. & Bell, N. H., 1975. J. Biol. Chem. 250: 7586–7592.Google Scholar
  71. 71.
    Levy, G. S., 1971. Biochem. Biophys. Res. commun. 43: 108–113.Google Scholar
  72. 72.
    Levy, G. S., 1971. J. Biol. Chem. 246: 7405–7410.Google Scholar
  73. 73.
    Neer, E. J., 1973. J. Biol. Chem. 248: 3742–3744.Google Scholar
  74. 74.
    Drummond, G. I. & Dunham, J., 1978. Arch. Biochem. Biophys. 189: 63–75.Google Scholar
  75. 75.
    Sano, K., Nishikori, K., Noshiro, O. & Maeno, H., 1979. Arch. Biochem. Biophys. 197: 285–293.Google Scholar
  76. 76.
    Hoffmann, F. M., 1979. J. Biol. Chem. 254: 255–258.Google Scholar
  77. 77.
    Ross, E., Howlett, A., Ferguson, K. & Gilman, A., 1978. J. Biol. Chem. 253: 6401–6412.Google Scholar
  78. 78.
    Bhat, M. K., Iyengaz, R., Abramouritz, J., Bordelon-Riser, M. E. & Birnbaumer, L., 1980. Proc. Nat. Acad. Sci. U.S.A. 77: 3836–3840.Google Scholar
  79. 79.
    Spiegel, A., Downs, R. & Aurbach, G., J. Cyclic Nucletide Res. 5, 3–17.Google Scholar
  80. 80.
    Nilsen, T. B., Downs, R. W. & Spiegel, A. M., 1980. Biochem. J. 190: 439–443.Google Scholar
  81. 81.
    Downs, R. W., Spiegel, A. M., Singer, M., Reen, S. & Aurbach, G. P., 1980. J. Biol. Chem. 255: 949–954.Google Scholar
  82. 82.
    Drummond, G. I., Sano, M. & Nambi, P., 1980. Arch. Biochem. Biophys. 201: 286–295.Google Scholar
  83. 83.
    Eckstein, F., 1979. J. Biol. Chem. 254: 9829–9834.Google Scholar
  84. 84.
    Strittmatter, S. & Neer, E. J., 1980. Proc. Nat. Acad. Sci. U.S.A. 77: 6344–6348.Google Scholar
  85. 85.
    Hebdon, M., Levine III, H., Sahyoun, N., Schmitges, C. J. & Cuatrecasas P., 1978. Proc. Nat. Acad. Sci. U.S.A. 75: 3693–3697.Google Scholar
  86. 86.
    Norethup, J. K., Sternweis, P. C., Smigel, M. D., Schlefer, L. S., Ross, E. M. & Gilman, A. G., 1980. Proc. Nat. Acad. Sci. U.S.A. 77: 6516–6520.Google Scholar
  87. 87.
    Ross, E. M. & Gilamn, A. G., 1977. J. Biol. Chem. 252: 6966–6969.Google Scholar
  88. 88.
    Bradham, L. S., 1977. J. Cyclic Nucleotide Res. 3: 119–128.Google Scholar
  89. 89.
    Rodbell, M., 1980. Nataure 284: 17–22.Google Scholar
  90. 90.
    Kuo, J. F. & Greengard, P., 1969. Proc. Nat. Acad. Sci. U.S.A. 64: 1349–1355.Google Scholar
  91. 91.
    Miyamoto, E., Kuo, J. F. & Greengard, P., 1969. J. Biol. Chem. 244: 6395–6402.Google Scholar
  92. 92.
    De Robertis, E., De Lores Arnaiz, G. R., Alberici, M., Butcher, R. W. & Sutherland, E. W., 1969. J. Biol. Chem. 242: 3487–3493.Google Scholar
  93. 93.
    Cheung, W. Y. & Salgamicoff, L., 1967. Nature 214: 90–91.Google Scholar
  94. 94.
    Maeno, H., Johnson, E. M. & Greengard, P., 1971. J. Biol. Chem. 246: 134–142.Google Scholar
  95. 95.
    Johnson, E. M., Maeno, H. & Greengard, P., 1971. J. Biol. Chem. 246: 7731–7739.Google Scholar
  96. 96.
    Ueda, T., Maeno, H. & Greengard, P., 1973. J. Biol. Chem. 248: 8295–8305.Google Scholar
  97. 97.
    Ueda, T. & Greengard, P., 1977. J. Biol. Chem. 252: 5155–5163.Google Scholar
  98. 98.
    Maeno, H. & Greengard, P., 1972. J. Biol. Chem. 247: 3269–3277.Google Scholar
  99. 99.
    Maeno, H., Reyes, P. L., Ueda, T., Rudolph, S. A. & Greengard, P., 1974. Arch. Biochem. Biophys. 164: 551–559.Google Scholar
  100. 100.
    Casnellie, J. E. & Greengard, P., 1974. Proc. Nat. Acad. Sci. U.S.A. 71: 1891–1895.Google Scholar
  101. 101.
    Carlsson, A. & Lindquist, M., 1963. Acta. Pharmacol. Toxicol. 20: 140–144.Google Scholar
  102. 102.
    Anden, N. E., Roos, B.-E. & Werdinius, B., 1964. Life Sci. 3: 149–158.Google Scholar
  103. 103.
    Westerink Ben, H. C., Lejeune, B., Lorf, J. & Van Praag, H. M., 1977. Europ. J. Pharmacol. 42: 179–190.Google Scholar
  104. 104.
    Roos, B. E., 1969. J. Pharm. Pharmacol. 21: 263–264.Google Scholar
  105. 105.
    Costall, B., Funderburk, W. H., Leonard, C. A. & Naylor, R. J., 1978. J. Pharm. Pharmacol. 30: 771–778.Google Scholar
  106. 106.
    Fuxe, K., Fredholm, B. B., Agnoti, L. F., Ogren, S.-O., Everitt, B. J., Johnsson, G. & Gustafsson, J.-A., 1978. Pharmacology 16, (suppl. 1), 99.Google Scholar
  107. 107.
    Lee, H. K., Chung, P. M. & Wang, S. C., 1978. Europ. J. Pharmacol. 53: 29–38.Google Scholar
  108. 108.
    Puech, A. J., Simon, P. & Boissier, J. R., 1978. Europ. J. Pharmacol. 50: 291–300.Google Scholar
  109. 109.
    Honda, F., Satoh, Y. & Simonura, K., 1977. Japan J. Pharmacol. 27: 397–411.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1982

Authors and Affiliations

  • Hiroo Maeno
    • 1
  1. 1.Central Research LaboratoriesYamanouchi Pharmaceutical Co. Ltd.TokyoJapan

Personalised recommendations