Archives of Microbiology

, Volume 120, Issue 3, pp 255–262

Electron microscopic study on the quaternary structure of the isolated particulate alcohol-acetaldehyde dehydrogenase complex and on its identity with the polygonal bodies of Clostridium kluyveri

  • R. Lurz
  • F. Mayer
  • G. Gottschalk
Article

Abstract

The alcohol-acetaldehyde dehydrogenase complex of Clostridium kluyveri has been separated from contaminating β-hydroxybutyryl-CoA dehydrogenase by repeated precipitation with manganese and ammonium sulfate. Mn++ was required for maximum alcohol dehydrogenase activity.

The molecular weight of the enzyme complex was 194,000 as determined by sucrose density gradient centrifugation. The enzyme complex has been shown to contain two types of subunits with molecular weights of 55,000±2,600 and 42,000±1,200, respectively which are arranged in “H”-shaped particles.

In solutions with an ionic strength above 25 mM the enzyme complex precipitated in the form of lumps as has been shown with specific ferritin-conjugated antibodies. These lumps are assumed to be aggregated polygonal bodies present in C. kluyveri.

Key words

Alcohol dehydrogenase Acetaldehyde dehydrogenase Clostridium kluyveri Electron microscopy Polygonal bodies Enzyme complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behn, W., Arnold, C. G.: Localization of extranuclear genes by investigations of the ultrastructure in Chlamydomonas reinhardii. Arch. Mikrobiol. 92, 85–90 (1974)Google Scholar
  2. Bergmeyer, H. U.: Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie 1974Google Scholar
  3. Bornstein, B. T., Barker, H. A.: The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. J. Biol. Chem. 55, 223–230 (1948)Google Scholar
  4. Bowien, B., Mayer, F.: Further studies on the quaternary structure of D-ribulose-1,5-bisphosphate carboxylase from Alcaligenes eutrophus. Eur. J. Biochem. 88, 97–107 (1978)Google Scholar
  5. Breese, S. S., Hsu, K. C.: Techniques of ferritin-tagged antibodies. In: Methods in Virology. Vol. 5, K. Maramorosch, H. Koprowski, eds., pp. 399–422. New York: Academic Press 1971Google Scholar
  6. Brewer, J. M., Ljungdahl, L., Spencer, T. E., Neece, S. H.: Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J. Biol. Chem. 245, 4798–4803 (1970)Google Scholar
  7. Burton, R. M., Stadtman, E. R.: The oxidation of acetaldehyde to acetylcoenzyme A. J. Biol. Chem. 202, 873–890 (1953)Google Scholar
  8. Cho, K. Y., Doy, C. H.: Ultrastructure of the obligate anaerobic bacteria Clostridium kluyveri and C. acetobutylicum. Aust. J. Biol. Sci. 26, 547–558 (1973)Google Scholar
  9. Fangman, W. L., Nass, G., Neidthart, F. C.: Immunological and chemical studies of phenylalanin-s-RNA synthetase from E. coli. J. Mol. Biol. 13, 202–219 (1965)Google Scholar
  10. Gaertner, F. H.: Unique catalytic properties of enzyme clusters. Trends Biochem. Sci. 3, 63–65 (1978)Google Scholar
  11. Hillmer, P., Gottschalk, G.: Particulate nature of enzymes involved in the fermentation of ethanol and acetate by Clostridium kluyveri. FEBS Letters 21, 351–354 (1972)Google Scholar
  12. Hillmer, P., Gottschalk, G.: Solubilization and partial characterization of particulate dehydrogenase from Clostridium kluyveri. Biochim. Biophys. Acta 334, 12–23 (1974)Google Scholar
  13. Kazahaya, T., Kawai, K., Yashima, S., Sasaki, Y.: Aerobic dissimilation of glucose by heterolactic bacteria. III. Aldehyde dehydrogenase and alcohol dehydrogenase of Leuconostoc mesenteroides. J. Gen. Appl. Microbiol. Tokyo 18, 43–55 (1972)Google Scholar
  14. Livingston, D. M.: Immunoaffinity chromatography of proteins. In: Methods in enzymology, Vol. 34, S. P. Colowick, N. O. Kaplan, eds., pp. 723–731. New York: Academic Press 1974Google Scholar
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  16. Madan, V. K., Hillmer, P., Gottschalk, G.: Purification and properties of NADP-dependent L(+)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium kluyveri. Eur. J. Biochem. 32, 51–56 (1973)Google Scholar
  17. Martin, R. G., Ames, B. N.: A method for determining the sedimentation behaviour of enzymes. Application to protein mixtures. J. Biol. Chem. 236, 1372–1379 (1961)Google Scholar
  18. Mayer, F., Ljungdahl, L.: Elektronenmikroskopische Analyse ATP-abhängiger Konfigurationsänderungen an isolierten Molekülen des Enzyms Formyltetrahydrofolat-Synthetase (FTHF-Snthetase). 18. Tagung für Elektronenmikroskopie, Münster 1977Google Scholar
  19. Oakley, C. L.: Antigen-Antibody reactions in microbiology. In: Methods in microbiology, Vol. 5A, J. R. Norris, D. W. Ribbons, eds., pp. 173–218. London, New York: Academic Press 1971Google Scholar
  20. Ottensmeyer, F. P., Andrew, J. W., Bazett-Jones, D. P., Chan, A. S. K., Hewitt, J.: Signal to noice enhancement in dark field electron micrographs of vasopressin: filtering of arrays of images in reciprocal space. J. Microsc. — Oxford — 109, 259–268 (1977)Google Scholar
  21. Rudolph, F. B., Purich, D. L., Fromm, H. J.: Coenzyme A — linked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties and kinetic studies of the enzyme. J. Biol. Chem. 243, 5539–5545 (1968)Google Scholar
  22. Schachmann, H. K.: Ultracentrifugation in biochemistry. London-New York: Academic Press 1959Google Scholar
  23. Schoberth, S., Gottschalk, G.: Considerations on the energy metabolism of Clostridium kluyveri. Arch. Mikrobiol. 65, 318–328 (1969)Google Scholar
  24. Shively, J. M., Frances, L. B., Kline, B. W.: Electron microscopy of the carboxisomes (polyhedral bodies) of Thiobacillus neapolitanus. J. Bacteriol. 116, 1405–1411 (1973)Google Scholar
  25. Short, S. A., Kaback, H. R., Hawkins, T., Kohn, L. D.: Immunochemical properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J. Biol. Chem. 250, 4285–4290 (1975)Google Scholar
  26. Spiess, E.: Electron microscopic investigation of Escherichia coli 50 S ribosomal subunits and core particles. Hoppe-Seylers Z. Physiol. Chem. 359, 1153 (1978)Google Scholar
  27. Spurr, A. R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)Google Scholar
  28. Stadtman, E. R., Burton, R. M.: Aldehyde dehydrogenase from Clostridium kluyveri. In: Methods in enzymology, Vol. 1, S. P. Colowick, N. O. Kaplan, eds., pp. 518–523. New York: Academic Press 1955Google Scholar
  29. Stegemann, H.: Apparatur zur thermokonstanten Elektrophorese oder Fokussierung und ihre Zusatzteile. Z. anal. Chem. 261, 388–391 (1972)Google Scholar
  30. Thauer, R. K., Jungermann, K., Henninger, H., Wenning, J., Decker, K.: The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 4, 173–180 (1968)Google Scholar
  31. Thauer, R. K., Jungermann, K., Rupprecht, E., Decker, K.: Hydrogen formation from NADH in cell-free extracts of Clostridium kluyveri. Acetyl-CoA requirement and ferredoxin dependence. FEBS Letters 4, 108–112 (1969)Google Scholar
  32. Valentine, R. C., Shapiro, B. M., Stadtman, E. R.: Regulation of glutamine synthetase, XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7, 2143–2152 (1968)Google Scholar
  33. Venable, J. H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell. Biol. 25, 407–408 (1965)Google Scholar
  34. Weber, K., Osborn, M.: The reliability of molecular weight determinations dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412 (1969)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. Lurz
    • 1
  • F. Mayer
    • 1
  • G. Gottschalk
    • 1
  1. 1.Institut für Mikrobiologie der UniversitätGöttingenFederal Republic of Germany
  2. 2.Max-Planck-Institut für Molekulare GenetikBerlin-Dahlem

Personalised recommendations