Archives of Microbiology

, Volume 120, Issue 3, pp 247–254 | Cite as

Accumulation of proteinase in the cell wall of Streptococcus cremoris strain AM1 and regulation of its production

  • F. A. Exterkate


The persistent accumulation of proteinase (PIII) activity in the cell wall of Streptococcus cremoris strain AM1 during growth depends on the presence of Ca2+-ions in the medium. In the absence of calcium initial accumulation of activity in the cell wall is observed, followed by a decrease to a low final level. Under this condition no increase of proteolytic activity is found in the extracellular fluid. A possible function of calcium in the stabilization of the enzyme is discussed.

Prolonged accumulation of catalytically active proteinase PIII in the cell wall occurs in the absence of messenger ribonucleic acid synthesis. This process involves de novo protein synthesis supported by preformed proteinase-specific messenger ribonucleic acid, which is possibly either intrinsically long-lived or is stabilized following its transcription. The level of the extracellular concentration of amino acids and/or peptides regulates the translation of newly synthesized proteinase-specific messenger ribonucleic acid and, possibly, the growth of the organism in milk.

Key words

Streptococcus cremoris Cell wall proteinase Calcium dependency Regulation Translational control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boethling, R. S.: Regulation of extracellular protease secretion in Pseudomonas maltophilia. J. Bacteriol. 123, 954–961 (1975)Google Scholar
  2. Both, G. W., McInnes, J. L., Hanlon, J. E., May, B. K., Elliott, W. H.: Evidence for an accumulation of messenger RNA specific for extracellular protease and its relevance to the mechanism of enzyme secretion in bacteria. J. Mol. Biol. 67, 199–217 (1972)Google Scholar
  3. Coleman, G., Brown, S.: The effect of rifampicin on the stability of the messenger ribonucleic acid of Bacillus amyloliquefaciens as determined by DNA: RNA hybridization. J. Gen. Microbiol. 92, 200–206 (1976)Google Scholar
  4. Efstathiou, J. D., McKay, L. L.: Plasmids in Streptococcus lactis: evidence that lactose metabolism and protease activity are plasmid linked. Appl. Environm. Microbiol. 32, 38–44 (1976)Google Scholar
  5. Exterkate, F. A.: An introductory study of the proteolytic system of Streptococcus cremoris strain HP. Neth. Milk Dairy J 29, 303–318 (1975)Google Scholar
  6. Exterkate, F. A.: Comparison of strains of Streptococcus cremoris for proteolytic activities associated with the cell wall. Neth. Milk Dairy J. 30, 95–105 (1976)Google Scholar
  7. Glenn, A. R., Both, G. W., McInnes, J. L., May, B. K., Elliott, W. H.: Dynamic state of the messenger RNA pool specific for extracellular protease in Bacillus amyloliquefaciens: its relevance to the mechanism of enzyme secretion. J. Mol. Biol. 73, 221–230 (1973)Google Scholar
  8. Glenn, A. R.: Production of extracellular proteins by bacteria. Ann. Rev. Microbiol. 30, 41–62 (1976)Google Scholar
  9. Gould, A. R., May, B. K., Elliott, W. H.: Accumulation of messenger RNA for extracellular enzymes as a general phenomenon in Bacillus amyloliquefaciens. J. Mol. Biol. 73, 213–219 (1973)Google Scholar
  10. Hazen, G. G.: Proteinasen. In: Methoden der Enzymatischen Analyse, 3rd edition (H. U. Bergmeyer, ed.), pp. 1038–1044. Weinheim: Verlag Chemie 1974Google Scholar
  11. Lodish, H. F.: Translational control of protein synthesis. Ann. Rev. Biochem. 45, 39–72 (1976)Google Scholar
  12. McLellan, W. L., Vogel, H. J.: Translational repression in the arginine system of Escherichia coli. Proc. Natl. Acad. Sci. U.S. 67, 1703–1709 (1970)Google Scholar
  13. Priest, F. G.: Effect of glucose and cyclic nucleotides on the transcription of α-amylase mRNA in Bacillus subtilis. Biochem. Biophys. Res. Commun. 63, 606–610 (1975)Google Scholar
  14. Rogosa, M., Franklin, J. C., Perry, K. D.: Correlation of the vitamin requirements with cultural and biochemical characters of Lactobacillus spp. J. Gen. Microbiol. 25, 473–482 (1961)Google Scholar
  15. Semets, E. V., Glenn, A. R., May, B. K., Elliott, W. H.: Accumulation of messenger ribonucleic acid specific for extracellular protease in Bacillus subtilis 168. J. Bacteriol. 116, 531–534 (1973)Google Scholar
  16. Shires, T. K., Pitot, H. C., Kauffman, S. A.: The membron: a functional hypothesis for the translational regulation of genetic expression. Biomembranes 5, 81–145 (1974)Google Scholar
  17. Stinson, M. W., Merrick, J. M.: Extracellular enzyme secretion by Pseudomonas lemoignei. J. Bacteriol. 119, 152–161 (1974)Google Scholar
  18. Stubbs, J. D., Hall, B. D.: Effects of amino acids starvation upon constitutive tryptophan messenger RNA synthesis. J. Mol. Biol. 37, 303–312 (1968)Google Scholar
  19. Thomas, T. D., Jarvis, B. D. W., Skipper, N. A.: Localization of proteinase(s) near the cell surface of Streptococcus lactis. J. Bacteriol. 118, 329–333 (1974)Google Scholar
  20. Venetianer, P.: Level of messenger RNA transcribed from the histidine operon in repressed, depressed and histidine-starved Salmonella typhimurium. J. Mol. Biol. 45, 375–384 (1969)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • F. A. Exterkate
    • 1
  1. 1.Netherlands Institute for Dairy Research (NIZO)EDEThe Netherlands

Personalised recommendations