Advertisement

Archives of Microbiology

, Volume 120, Issue 3, pp 195–200 | Cite as

Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH 4 +

  • P. Rowell
  • M. J. A. M. Sampaio
  • J. K. Ladha
  • W. D. P. Stewart
Article

Abstract

Extractable glutamine synthetase activity of the cyanobacterium Anabaena cylindrica was reduced by approximately 50% when N2-fixing cultures were treated with 10 mM NH 4 + or were placed in darkness. The deactivated enzyme could be rapidly reactivated (within 5 min) by adding 40 mM 2-mercaptoethanol to the biosynthetic reaction mixture. The enzyme could also be reactivated in vivo by replacing the culture in light or by removing NH 4 + . When the enzyme was deactivated by simultaneously adding NH 4 + and placing the culture in darkness, reactivation occurred on reillumination and removal of NH 4 + . The removal of NH 4 + in darkness did not result in reactivation. On in vitro reactivation of glutamine synthetase from dark or NH 4 + -treated cultures the maximum glutamine synthetase activity observed frequently exceeded that of glutamine synthetase extracted from untreated cultures. Anacystis nidulans showed a similar type of reversible dark deactivation to A. cylindrica but Plectonema boryanum and a Nostoc did not. With A. cylindrica, a direct positive correlation between the size of the intracellular pool of glutamate and biosynthetic glutamine synthetase activity occurred during light/dark shifts, and on treatment with NH 4 + . The changes in activity of glutamine synthetase in A. cylindrica in response to light resemble in some respects the light modulation of enzymes of the oxidative and reductive pentose phosphate pathways noted in cyanobacteria by others.

Key words

Blue-green algae Cyanobacteria Glutamine synthetase Light-modulation Anabaena cylindrica NH4+-deactivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L. E., Avron, M.: Light modulation of enzyme activity in chloroplasts. Plant Physiol. 57, 209–213 (1976)Google Scholar
  2. Anderson, L. E., Duggan, J. X.: Light modulation of Calvin cycle enzyme activity in photosynthetic prokaryotes and eukaryotes. Proc. 2nd Int. Symp. on Photosynth. Prokaryotes. (G. A. Codd, W. D. P. Stewart, eds.), pp. 179–181. Dundee: University of Dundee 1976Google Scholar
  3. Dharmawardene, M. W. N., Haystead, A., Stewart, W. D. P.: Glutamine synthetase of the nitrogen-fixing alga Anabaena cylindrica. Arch. Mikrobiol. 90, 281–295 (1973)Google Scholar
  4. Duggan, J. X., Anderson, L. E.: Light-regulation of enzyme activity in Anacystis nidulans (Richt.). Planta 122, 293–297 (1975)Google Scholar
  5. Gorham, P. R., McLachlan, J. S., Hammer, U. T., Kim, W. D.: Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verh. int. Verein. theor. angew. Limnol. 15, 796–804 (1964)Google Scholar
  6. Johansson, B. C., Gest, H.: Adenylylation/deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. Eur. J. Biochem. 81, 365–371 (1977)Google Scholar
  7. Ladha, J. K., Rowell, P., Stewart, W. D. P.: Effects of 5-hydroxylysine on acetylene reduction and assimilation of newly fixed NH4+ in the cyanobacterium Anabaena cylindrica. Biochem. Biophys. res. Commun. 83, 688–695 (1978)Google Scholar
  8. Lowry, O. H., Rosebrough, N. J., Farr, A., Randall, R. J.: Protein measurement with Folin-phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  9. Mackinney, G.: Absorption of light by chlorophyll solutions. J. biol. Chem. 140, 315–322 (1941)Google Scholar
  10. Meeks, J. C., Wolk, C. P., Lockau, W., Schilling, N., Shaffer, P. W., Chien, W. S.: Pathways of assimilation of (13N) N2 and 13NH4+ by cyanobacteria with and without heterocysts. J. Bacteriol. 134, 125–130 (1978)Google Scholar
  11. Meeks, J. C., Wolk, C. P., Thomas, J., Lockau, W., Shaffer, P. W., Austin, S. M., Chien, W. S., Galonsky, A.: The pathways of assimilation of 13NH4+ by the cyanobacterium Anabaena cylindrica. J. biol. Chem. 252, 7894–7900 (1977)Google Scholar
  12. Ownby, J. D.: Effects of amino acids on methionine-sulphoximine-induced heterocyst formation in Anabaena. Planta 136, 277–279 (1977)Google Scholar
  13. Rhodes, D., Sims, A. P., Stewart, G. R.: Glutamine synthetase and the control of nitrogen assimilation in Lemna minor L. In: Nitrogen assimilation of plants (E. J. Hewitt, C. V. Cutting, eds.). New York, London: Academic Press (in press, 1979)Google Scholar
  14. Rowell, P., Enticott, S., Stewart, W. D. P.: Glutamine synthetase and nitrogenase activity in the blue-green alga Anabaena cylindrica. New Phytol 79, 41–54 (1977)Google Scholar
  15. Rowell, P., Sampaio, M. J. A. M., Stewart, W. D. P.: Glutamine synthetase of cyanobacteria. Proc. Soc. Gen. Microbiol. 5, 103–104 (1978)Google Scholar
  16. Sampaio, M. J. A. M., Rowell, P., Stewart, W. D. P.: Purification and some properties of glutamine synthetase from the N2-fixing cyanobacteria Anabaena cylindrica and a Nostoc sp. J. Gen. Microbiol. (in press, 1979)Google Scholar
  17. Spackman, D. H., Stein, W. H., Moore, S.: Automatic recording apparatus for use in the chromatography of amino acids. Anal Chem. 30, 1190–1206 (1958)Google Scholar
  18. Stacey, G., Tabita, F. R., Van Baalen, C.: Nitrogen and ammonia assimilation in the cyanobacteria: Purification of glutamine synthetase from Anabaena sp. strain CA. J. Bacteriol. 132, 596–603 (1977)Google Scholar
  19. Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971)Google Scholar
  20. Stewart, G. R., Rhodes, D.: Control of enzyme levels in the regulation of nitrogen assimilation. In: Regulation of enzyme synthesis and activity (H. Smith, ed.), pp. 1–22. London: Academic Press, 1977Google Scholar
  21. Stewart, W. D. P., Rowell, P.: Effects of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem. Biophys. Res. Commun. 65, 846–856 (1975)Google Scholar
  22. Streicher, S. L., Shanmugam, K. T., Ausubel, F., Morandi, C., Goldberg, R. B.: Regulation of nitrogen fixation in Klebsiella pneumoniae: evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J. Bacteriol. 120, 815–821 (1974)Google Scholar
  23. Thomas, J., Meeks, J. C., Wolk, C. P., Shaffer, P. W., Austin, S. M., Chien, W. S.: Formation of glutamine from (13N) ammonia, (13N) dinitrogen, and (14C) glutamate by heterocysts isolated from Anabaena cylindrica. J. Bacteriol. 129, 1545–1555 (1977)Google Scholar
  24. Wolk, C. P., Thomas, J., Shaffer, P. W., Austin, S. M., Galonsky, A.: Pathway of nitrogen metabolism after fixation of 13N-labelled nitrogen gas by the cyanobacterium Anabaena cylindrica. J. biol. Chem. 251, 5027–5034 (1976)Google Scholar
  25. Wolosiuk, R. A., Buchanan, B. B.: Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266, 565–567 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. Rowell
    • 1
  • M. J. A. M. Sampaio
    • 1
  • J. K. Ladha
    • 1
  • W. D. P. Stewart
    • 1
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeScotland

Personalised recommendations