Advertisement

Effect of glucose ingestion on energy substrate utilization during prolonged muscular exercise

  • F. Pirnay
  • M. Lacroix
  • F. Mosora
  • A. Luyckx
  • P. Lefebvre
Article

Summary

The distribution of substrates utilized during prolonged exercise was investigated in normal human volunteers with and without ingestion of 100 g exogenous glucose. The energy provided by protein oxidation was derived from urinary nitrogen excretion and the total energy provided by carbohydrates and lipids was calculated from respiratory quotient (RQ) determinations. The contribution of exogenous glucose to the energy supply was determined by an original procedure using “naturally labeled 13C-glucose” as metabolic tracer. Protein oxidation provided between 1 and 2% of the total energy requirement; this amount was not affected by glucose ingestion. In the absence of exogenous glucose ingestion, carbohydrate were progressively replaced by lipids as source of energy. Exogenous glucose contributed markedly to total carbohydrate oxidation and decreased the percentage of energy derived from lipids. In addition, ingestion of exogenous glucose resulted in a significant economy of endogenous carbohydrates and permitted to prolong the duration of exercise.

Key words

Exercise Respiratory quotient Fuels Stable isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, G., Felig, P., Hagenfeldt, L.: Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose free fatty acids, and amino acids. J. clin. Invest. 53, 1080–1090 (1974)Google Scholar
  2. Benade, A. J. S., Jansen, C. R., Rogers, G. G., Wyndham, C. H., Strydom, N. B.: The significance of an increased RQ after sucrose ingestion during prolonged aerobic exercise. Pflügers Arch. 342, 199–206 (1973)Google Scholar
  3. Bergström, J., Hermansen, L., Hultman, E., Saltin, B.: Diet, muscle glycogen and physical performance. Acta physiol. scand. 71, 140–150 (1967)Google Scholar
  4. Carlson, L. A., Pernow, B.: Studies of blood lipids during exercise. Arterial and venous plasma concentration of unesterified fatty acid. J. Lab. clin. Med. 53, 833–841 (1959)Google Scholar
  5. Christensen, E. H., Hansen, O.: ArbeitsfÄhigkeit und ErnÄhrung. Skand. Arch. Physiol. 81, 160–172 (1939)Google Scholar
  6. Costill, D. L., Bowers, R., Sparks, K., Turner, C.: Muscle glycogen utilization during prolonged running. J. appl. Physiol. 31, 353–356 (1971)Google Scholar
  7. Costill, D. L., Benett, A., Branam, G., Eddy, D.: Glucose ingestion at rest and during prolonged exercise. J. appl. Physiol. 34, 764–769 (1973)Google Scholar
  8. Dill, D. B., Edwards, H. T., Talbott, J. H.: Studies in muscular activity. VII. Factors limiting the capacity of work. J. Physiol. 77, 49–54 (1932)Google Scholar
  9. Duchesne, J., Mosora, F., Lacroix, M., Lefebvre, P., Luyckx, A., Lopez-Habib, G.: Une application clinique d'une nouvelle méthode biophysique basée sur l'analyse isotopique du CO2 exhalé par l'homme. C.R. Acad. Sci. (Paris) 277D, 2261–2264 (1973)Google Scholar
  10. Friedberg, S. J., Harlan, W. R., Jr., Trout, D. L., Estes, E. H., Jr.: The effect of exercise on the concentration and turnover of plasma nonesterified fatty acids. J. clin. Invest. 39, 215–230 (1960)Google Scholar
  11. Hoffman, W. S.: A rapid photoelectric method for the determination of glucose in blood and urine. J. biol. Chem. 120, 51–55 (1937)Google Scholar
  12. Hultman, E., Bergström, J.: Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta med. scand. 182, 109–117 (1967)Google Scholar
  13. Hultman, E., Bergström, J., Roch-Norlund, A. E.: Glycogen storage in human skeletal muscle. In: Muscle metabolism during exercise (B. Pernow, B. Saltin, ed.), pp. 273–288. New-York: Plenum 1971Google Scholar
  14. Issekutz, B., Jr., Miller, H. I., Rodahl, K.: Lipid and carbohydrate metabolism during exercise. Fed. Proc. 25, 1415–1420 (1966)Google Scholar
  15. Issekutz, B., Jr., Miller, H. I., Paul, P., Rodahl, K.: Aerobic work capacity and plasma FFA turnover. J. appl. Physiol. 20, 293–296 (1965)Google Scholar
  16. Keul, J., Doll, E., Kepler, D.: Energy metabolism of human muscle. Basel: Karger 1972Google Scholar
  17. Lacroix, M., Mosora, F., Pontus, M., Lefebvre, P., Luyckx, A., Lopez-Habib, G.: Glucose naturally labeled with carbon-13: use for metabolic studies in man. Science 181, 445–446 (1973)Google Scholar
  18. Lacroix, M., Mosora, F.: Variations du rapport 13C/12C dans le métabolisme animal. A congress report, in isotope ratios as pollutant source and behaviour indicators. At. En. Ag. Vienna 343–358 (1975)Google Scholar
  19. Lusk, G.: The science of nutrition. Philadelphia: Saunders 1928Google Scholar
  20. Metropolitan Life Insurance Company: Statistical Bulletin, (tables 2 and 3). 40 (1959)Google Scholar
  21. Mosora, F., Lacroix, M., Pontus, M., Duchesne, J.: Effets de la désoxycorticostérone, du glucagon et de l'insuline sur le rapport isotopique 13C/12C du CO2 respiratoire chez le rat. Bull. Acad. roy. Belg. Sci. 58, 565–576 (1972)Google Scholar
  22. Mosora, F., Lefebvre, P., Pirnay, F., Lacroix, M., Luyckx, A., Duchesne, J.: Quantitative evaluation of the oxidation of an exogenous glucose load using naturally labeled 13C-glucose. Metabolism 25, 1575–1582 (1976)Google Scholar
  23. Paul, P.: FFA metabolism of normal dogs during steady-state exercise at different work loads. J. appl. Physiol. 28, 127–132 (1970)Google Scholar
  24. Paul, P.: Effects of long lasting physical exercise and training on lipid metabolism. In: Metabolic adaptation to prolonged physical exercise (H. Howald, J. R. Poortmans, ed.), pp. 156–193. Basel: BirkhÄuser 1975Google Scholar
  25. Pirnay, F., Lacroix, M., Mosora, F., Luyckx, A., Lefebvre, P.: Glucose oxidation during prolonged exercise evaluated with naturally labeled 13C-glucose. J. appl. Physiol. (in press)Google Scholar
  26. Shreeve, W. W.: Potential uses of 13C-labeled carbohydrates in the study and diagnosis of diabetes mellitus. Proceed 1st Int. Conf. Stable Isotopes, May, 1973, Argonne, III., USAEC Conf. 730525Google Scholar
  27. Smith, B., Epstein, S.: Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971)Google Scholar
  28. Wahren, J., Felig, P., Ahlborg, G., Jorfeldt, L.: Glucose metabolism during leg exercise in man. J. clin. Invest. 50, 2715–2725 (1971)Google Scholar
  29. Wahren, J. P., Felig, P., Hagenfeldt, L., Hendler, R., Ahlborg, G.: Splanchnic and leg metabolism of glucose, free fatty acids and amino acids during prolonged exercise in man. In: Metabolic adaptation to prolonged physical exercise (H. Howald, J. R. Poortmans, ed.), pp. 144–153. Basel: BirkhÄuser 1975Google Scholar
  30. Wilkerson, H. L. C.: Diagnosis, oral glucose tolerance tests. In: Diabetes mellitus: Diagnosis and treatment, pp. 31–34. New York: American Diabetes Association 1964Google Scholar
  31. Young, D. R., Pelligra, R., Shapira, J., Adachi, R. R., Skrettin-Gland, K.: Glucose oxidation and replacement during prolonged exercise in man. J. appl. Physiol. 23, 734–741 (1967)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • F. Pirnay
    • 1
    • 2
  • M. Lacroix
    • 1
    • 2
  • F. Mosora
    • 1
    • 2
  • A. Luyckx
    • 1
    • 2
  • P. Lefebvre
    • 1
    • 2
  1. 1.Institut Provincial E. MalvozUniversity of LiègeLiègeBelgium
  2. 2.Department of Atomic and Molecular Physics and Division of Diabetes, Institute of MedicineUniversity of LiègeLiègeBelgium

Personalised recommendations