Advertisement

Psychologische Forschung

, Volume 31, Issue 4, pp 299–337 | Cite as

Two mechanisms of vision in primates

  • Colwyn B. Trevarthen
Article

Summary

Experiments with split-brain monkeys led me to consider that vision of space and vision of object identity may be subserved by anatomically distinct brain mechanisms. In this paper I examine the visual mechanisms of the brain to test the idea that vision involves two parallel processes; one ambient, determining space at large around the body, the other focal which examines detail in small areas of space.

In vertebrates there is a projection from eye to midbrain of a detailed topography of body-centered behavioral space. This visual map is integrated with the bisymmetric motor system to obtain correspondence between visual loci and the goals for movements. The midbrain visual system governs basic vertebrate locomotor behavior.

The phylogenetically more recent forebrain visual system looks almost exclusively at central behavioral space, and cortical motor control is likewise concerned with the formulation of highly specific acts in the same central territory.

Anatomy and brain surgery reveal a midbrain visual mechanism in primates which plays a part in ambient space perception over the whole field. In contrast, focal vision served by the fovea and parafovea and by the cortical visual areas picks out areas in the ambient field for close attention. Conjugate eye movements are the most direct sign of this attention.

The interplay between the two channels of visual analysis is a feature of vision in all active animals; but the complexity of focal vision in primates is revealed in their visual system at all levels, and in the parts of the motor system which orient vision, or which govern acts directed to specific visual objects.

Keywords

Visual System Motor System Locomotor Behavior Space Perception Visual Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Versuche an „split-brain“ Affen legten die Annahme nahe, daß die Wahrnehmung des Raumes und die Wahrnehmung der Identität von Gegenständen auf anatomisch getrennten Hirnmechanismen beruhen. In der vorliegenden Arbeit werden die Sehmechanismen des Gehirns untersucht, wobei von der Überlegung ausgegangen wird, daß hier zwei parallele Prozesse involviert sind: ein dezentrierter („ambient“), der die Wahrnehmung des den Körper umgebenden Raumes bestimmt, und ein zentrierter („focal“), durch welchen Details kleiner Raumflächen aufgefaßt werden.

Bei Wirbeltieren wird eine detaillierte Topographie des körper-zentrierten Verhaltensraumes vom Auge zum Mittelhirn projiziert. Diese visuelle Topographie ist so mit dem bi-symmetrischen motorischen System integriert, daß sich eine Korrespondenz zwischen gesehenen Punkten und Bewegungszielen ergibt.

Das phylogenetisch jüngere visuelle System des Vorderhirns befaßt sich fast ausschließlich mit dem zentralen Verhaltensraum; die corticale motorische Kontrolle befaßt sich entsprechend mit sehr spezifischen Handlungen im gleichen zentralen Gebiet.

Anatomie und Hirnchirurgie liefern bei Primaten Hinweise auf einen visuellen Mechanismus im Mittelhirn, der für die dezentrierte Raumwahrnehmung eine Rolle spielt. Im Gegensatz dazu greift das auf Fovea, Parafovea und den visuellen Arealen des Cortex beruhende zentrierte Sehen Areale des umgebenden Feldes für eine eingehendere Inspektion heraus. Koordinierte Augenbewegungen sind direkter Ausdruck dieser Aufmerksamkeitszuwendung.

Die Wechselwirkung zweier Mechanismen der visuellen Analyse kennzeichnet das Sehen bei allen aktiven Tieren. Die Komplexität des zentrierten Sehens zeigt sich auf allen Stufen des visuellen Systems von Primaten und in den Teilen des motorischen Systems, welche das Sehen ausrichten und die auf bestimmte visuelle Objekte gerichteten Handlungen steuern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajuriaguerra, J., and H. Hécaen: Le Cortex Cérébral, 2nd edit. Paris: Masson & Cie. 1960.Google Scholar
  2. Akert, K.: Experimenteller Beitrag betr. die zentrale Netzhaut-Representation im Tectum Opticum. Schweiz. Arch. Neurol. Psychiat. 64, 1–16 (1949a).Google Scholar
  3. —: Der Visuelle Greifreflex. Helv. physiol. Pharmacol. Acta 7, 112–134 (1949b).Google Scholar
  4. Apter, J. T.: Projection of the retina on the superior colliculus of cats. J. Neurophysiol. 8, 123–134 (1945).Google Scholar
  5. —: Eye movements following stryehninization of the superior colliculus of cats. J.Neurophysiol. 9, 73–86 (1946).Google Scholar
  6. Békésy, G. v.: Sensory Inhibition. Princeton: Princeton University Press 1967.Google Scholar
  7. Bender, M. B., and S. Shanzer: Oculomotor pathways defined by electric stimulation and lesions in the brainstem of monkey. In: M. B. Bender (ed.), The Oculomotor System, chap. 4, p. 81–140. New York: Harper & Row, Hoeber Medical Division 1964.Google Scholar
  8. Bishop, A.: Use of the hand in lower primates. In: J. Buettner-Janusch (ed.), Evolutionary and genetic biology of primates, vol. 2, p. 133–225. New York: Academic Press 1964.Google Scholar
  9. Blake, L.: The effect of lesions of the superior colliculus on brightness and pattern discrimination in the cat. J. comp. physiol. Psychol. 52, 272–278 (1959).Google Scholar
  10. Boynton, R. M.: In: Visual search techniques. Nat. Acad. Sci.-Nat. Res. Council Publ. No. 712, 232 (1960).Google Scholar
  11. Buettner-Janusch, J.: An introduction to the primates. In: J. Buettner-Janusch (ed.), Evolutionary and genetic biology of primates, vol. 1, p. 1–64. New York: Academic Press 1964.Google Scholar
  12. Butter, C. M., and W. L. Gekorski: Alterations in pattern equivalence following inferotemporal and lateral striate lesions in rhesus monkeys. J. comp. physiol. Psychol. 61, 309–342 (1966).Google Scholar
  13. —, and H. E. Rosvold: Stimulus generalization following inferotemporal and lateral striate lesions in monkeys. In: D. Mostofsky (ed.), Stimulus generalization. Stanford: Stanford University Press 1964.Google Scholar
  14. Cowey, A.: Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimirl sciureus. J.Neurophysiol. 27, 366–393 (1964).Google Scholar
  15. —, and L. Weiskrantz: A comparison of the effects of inferotemporal and striate cortex lesion on the visual behavior of rhesus monkeys. Quart. J. exp. Psychol. 19, 246–253 (1967).Google Scholar
  16. Craig, W.: Appetites and aversions as constituents of instinct. Biol. Bull. 84, 91–107 (1918).Google Scholar
  17. Daniel, P. M., and D. Whitteridge: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961).Google Scholar
  18. Denny-Brown, D.: The midbrain and motor integration. Proc. roy. Soc. Med. 55, 527–538 (1962).Google Scholar
  19. —, and R. A. Chambers: Visuo-motor function in the cerebral cortex. J. nerv. ment. Dis. 121, 288–289 (1955).Google Scholar
  20. —, and S. Horenstein: The significance of perceptual rivalry resulting from parietal lesions. Brain 75, 433–471 (1952).Google Scholar
  21. DeValois, R. L.: Neural processing of visual information. In: R. W. Russell (ed.), Frontiers in physiological psychology, chap. 3, p. 51–91. New York: Academic Press 1966.Google Scholar
  22. Doty, R. W.: Functional significance of the topographical aspects of the retinocortical projection. In: R. Jung and H. Kornhuber (eds.), The visual system: Neurophysiology and psychophysics, p. 228–245. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  23. Downer, J. L. de C.: Role of corpus callosum in transfer of training in Macaco, mulatta. Fed. Proc. 17, 37 (1958).Google Scholar
  24. —: Changes in visually guided behaviour following midsagittal division of optic chiasm and corpus callosum in monkey (Macaco, mulatta). Brain 82, 251–259 (1959).Google Scholar
  25. Fischman, M. W., and T. H. Meikle: Visual intensity discrimination in cats after serial tectal and cortical lesions. J. comp. physiol. Psychol. 59, 193–201 (1965).Google Scholar
  26. Gaze, R. M., and M. Jacobson: The projection of the binocular visual field on the optic tecta of the frog. Quart. J. exp. Physiol. 47, 273–280 (1962).Google Scholar
  27. Gazzaniga, M. S., J. E. Bogen, and R. W. Sperry: Some functional effects of sectioning the cerebral commissures in man. Proc. nat. Acad. Sci. (Wash.) 48, 1765–1769 (1962).Google Scholar
  28. — — —: Cerebral mechanisms involved in ipsilateral eye-hand use in split-brain monkeys. Exp. Neurol. 10, 148–155 (1964).Google Scholar
  29. — — —: Observations on visual perception after disconnection of the cerebral hemispheres in man. Brain 88, 221–236 (1965).Google Scholar
  30. Gibson, J. J.: The senses considered as perceptual systems. Boston: Houghton Mifflin 1966.Google Scholar
  31. Hamilton, C. R., and M. S. Gazzaniga: Lateralization of learning of colour and brightness discriminations following brain bisection. Nature (Lond.) 201, 220 (1964).Google Scholar
  32. Harris, A. J.: Eye movements of the dogfish Squalus acanthias L. J. exp. Biol. 43, 107–130 (1964).Google Scholar
  33. Hassler, R.: Comparative anatomy of the central visual systems in day- and night-active primates. In: R. Hassler and H. Stephan (eds.), Evolution of the forebrain, p. 419–434. Stuttgart: Georg Thieme 1966.Google Scholar
  34. Hécaen, H., and J. Ajuriaguerra: Balint's syndrome and its minor forms. Brain 77, 373–400 (1954).Google Scholar
  35. Hess, R. W., S. Burgi, and V. Bucher: Motorische Funktion des Tektal- und Tegmentalgebietes. Mschr. Psychiat. Neurol. 112, l-52 (1946).Google Scholar
  36. Humphrey, N. K., and L. Weiskrantz: Vision in monkeys after removal of the striate cortex. Nature (Lond.) 215, 595–597 (1967).Google Scholar
  37. Hyde, J. E., and S. G. Eliasson: Brainstem induced eye movements in cats. J. comp. Neurol. 108, 139–172 (1957).Google Scholar
  38. Jacobsen, C. F.: Function of frontal association area in primates. Arch. Neurol. Psychiat. (Chic.) 33, 558–569 (1935).Google Scholar
  39. —, and T. A. Jackson: An experimental analysis of the functions of the frontal association areas in primates. J. nerv. ment. Dis. 82, 1–14 (1935).Google Scholar
  40. Jacobson, M.: The representation of the retina on the optic tectum of the frog. Correlation between retino-tectal magnification factor and retinal ganglion cell count. Quart. J. exp. Physiol. 47, 170–178 (1962).Google Scholar
  41. Klüver, H.: Functional significance of the geniculo-striate system. Biol. Symposia 7, 253–299 (1942).Google Scholar
  42. Kuypers, H. G. J. M.: Discussion. In: V. B. Mountcastle (ed.), Interhemispheric relations and cerebral dominance, p. 114–115. Baltimore: The Johns Hopkins Press 1962.Google Scholar
  43. —, and H. E. Rosvold: Occipito-temporal cortico-cortical connections in the rhesus monkey. Exp. Neurol. 11, 245–261 (1965).Google Scholar
  44. Lashley, K. S.: The mechanism of vision: XVIII. Effects of destroying the visual “associative areas” of the monkey. Genet. Psychol. Monogr. 37, 107–166 (1948).Google Scholar
  45. Lee-Teng, E., and B. W. Sperry: Intermanual stereognostic size discrimination in split-brain monkeys. J. comp. physiol. Psychol. 62, 84–89 (1966).Google Scholar
  46. Lissauer, W.: Ein Fall von Seelenblindheit nebst einen Beitrag zur Theorie derselben. Arch. Psychiat. Nervenkr. 21, 222–270 (1890).Google Scholar
  47. Lorenz, K. Z.: Über die Bildung des Instinktbegriffes. Naturwissenschaften 25, 289–300 (1937).Google Scholar
  48. Luria, A. R.: Disorders of “simultaneous perception” in a case of bilateral occipital brain injury. Brain 82, 437–449 (1959).Google Scholar
  49. —: Higher cortical functions in man. New York: Basic Books, Consultants Bureau 1966.Google Scholar
  50. —, and A. L. Yarbus: Disturbances of active visual perception with lesions of the frontal lobes. Cortex 2, 202–212 (1966).Google Scholar
  51. Mackworth, N. H.: Visual noise causes tunnel vision. Psychon. Sci. 3, 67–68 (1965).Google Scholar
  52. Meikle, T. H.: Failure of interocular transfer of brightness discrimination. Nature (Lond.) 1243–1244 (1964).Google Scholar
  53. —, and J. A. Sechzer: Interocular transfer of brightness discrimination in “split brain” cats. Science 132, 734–735 (1960).Google Scholar
  54. Mishkin, M.: Visual mechanisms beyond the striate cortex. In: R. W. Russell (ed.), Frontiers in physiological psychology, chap. 4, p. 93–119. New York: Academic Press 1966.Google Scholar
  55. —, and K. H. Pribram: Visual discrimination performance following partial ablations of the temporal lobe: I. Ventral vs. lateral. J. comp. physiol. Psychol. 47, 14–20 (1954).Google Scholar
  56. — —: Analysis of the effects of frontal lesions in monkey. I. Variations of delayed alternations. J. comp. physiol. Psychol. 48, 492–495 (1955).Google Scholar
  57. — —: Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response. J. comp. physiol. Psychol. 49, 36–40 (1956).Google Scholar
  58. Myers, R. E.: Function of corpus callosum in interocular transfer. Brain 79, 358–363 (1956).Google Scholar
  59. —: Corpus callosum and visual gnosis. In: Brain mechanisms and Learning. A symposium, p. 481–505. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  60. —: Commissural connections between occipital lobes of the monkey. J. comp. Neurol. 118, 1–16 (1962).Google Scholar
  61. Napier, J. R.: Studies of the hands of living primates. Proc. zool. Soc. London 134, 647–657 (1960).Google Scholar
  62. —: Prehensility and opposability in the hands of primates. In: J. E. Harris (ed.), Vertebrate locomotion, p. 115–132. Symposium No 5. London: Zool. Soc. London 1961.Google Scholar
  63. Østerberg, G.: Topography of the layers of rods and cones in the human retina. Acta ophthal. (Kbh.) 65, Suppl., 1–102 (1935).Google Scholar
  64. Pasik, P., and T. Pasik: Oculomotor functions in monkeys with lesions of the cerebrum and the superior colliculi. In: M. B. Bender (ed.), The oculomotor system.chap. 3, p. 40–80. New York: Harper & Row, Hoeber Medical Division 1964a.Google Scholar
  65. Pasik, T., and P. Pasik: Optokinetic nystagmus: an unlearned response altered by section of chiasma and corpus callosum in monkeys. Nature (Lond.) 203, 609–611 (1964b).Google Scholar
  66. —, and M. B. Bender: The superior colliouli and eye movements. Arch. Neurol. (Chic.) 15, 420–436 (1966).Google Scholar
  67. Pribram, K. H.: A review of theory in physiological psychology. Ann. Rev. Psychol. 11, 1–40 (1960).Google Scholar
  68. —, and M. Mishkin: Analysis of the effects of frontal lesions in monkey: III. Object alternation. J. comp. physiol. Psychol. 49, 41–45 (1956).Google Scholar
  69. Rashbass, C.: The relationship between saccadic and smooth tracking eye movements. J. Physiol. (Lond.) 159, 326–338 (1961).Google Scholar
  70. Sanders, A. F.: The selective process in the functional visual field. From Inst. for Perception RVO-TNO, Nat. Def. Res. Organization TNO. Soersterberg, Netherlands, 1963.Google Scholar
  71. Schwassmann, H. D., and L. Kruger: Organization of the visual projection upon the optic tectum of some fresh water fish. J. comp. Neurol. 124, 113–126 (1965).Google Scholar
  72. Siminoff, R., H. D. Schwassmann, and L. Kruger: An electrophysiological study of the visual projection to the superior colliculus of the rat. J. comp. Neurol. 127, 435–444 (1966).Google Scholar
  73. Speery, R. W.: Neurology and the mind-brain problem. Amer. Sci. 40, 291–312 (1952).Google Scholar
  74. —: Corpus callosum and interhemispheric transfer in the monkey. Macaca mulatta, (abstract). Anat. Rec. 131, 297 (1958).Google Scholar
  75. —: Cerebral organization and behavior. Science 133, 1749–1757 (1961).Google Scholar
  76. Speague, J. M.: Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153, 1544–1547 (1966).Google Scholar
  77. —, and T. H. Meikle jr.: The role of the superior colliculus in visually guided behavior. Exp. Neurol. 11, 115–146 (1965).Google Scholar
  78. Talbot, S. A., and W. H. Marshall: Physiological studies on neural mechanisms of visual localization and discrimination. Amer. J. Opthal. 24, 1255–1264 (1941).Google Scholar
  79. Teuber, H. L., W. S. Battersby, and M. B. Bender: Visual field defects after penetrating missile wounds of the brain. Cambridge: Harvard Univ. Press 1960.Google Scholar
  80. Trevarthen, C. B.: Studies on visual learning in split-brain monkeys. Unpublished doctoral dissertation. California Institute of Technology. Pasadena 1962a.Google Scholar
  81. —: Double visual learning in split-brain monkeys. Science 136, 258–259 (1962b).Google Scholar
  82. —: Processus visuels interhémisphériques localisés dans le tronc cérébral. Leur mise en évidence sur des singes à cerveau dédoublé. C. R. Soe. Biol. (Paris) 157, 2019–2022 (1963).Google Scholar
  83. - Functional interactions between the cerebral hemispheres of the split-brain monkey. In: E. G. Ettlinger (ed.), Functions of the Corpus callosum. Ciba Foundation Study Group, No 20, p. 24–40. And discussions, p. 103–106 and p. 144–147. 1965.Google Scholar
  84. —: Manipulative strategies of baboons and the origins of cerebral asymmetry. In: M. Kinsbourne (ed.), Hemispheric asymmetry of function. London: Tavistock (1968).Google Scholar
  85. Voneida, T. J.: Performance of a visual conditioned response in split-brain cats. Exp. Neurol. 8, 493–504 (1963).Google Scholar
  86. Wagman, I. H.: Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: M. B. Bender (ed.), The oculomotor system, chap. 2, p. 18–39. New York: Harper & Row, Hoeber Medical Division 1964.Google Scholar
  87. Walls, G. L.: The vertebrate eye. Michigan: The Cranbrook Inst. of Science 1942.Google Scholar
  88. —: The evolutionary history of eye movements. Vision Res. 2, 69–80 (1962).Google Scholar
  89. Weiskrantz, L.: Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia 1, 145–164 (1963).Google Scholar
  90. Welch, K., and P. Stuteville: Experimental production of unilateral neglect in monkeys. Brain 81, 341–377 (1958).Google Scholar
  91. Wertheim, Th.: Über die indirekte Sehschärfe. Z. Psychol. 7, 173–187 (1894).Google Scholar
  92. Weymouth, F. W.: Visual sensory units and the minimum angle of resolution. Amer. J. Ophthal. 46, 102–113 (1958).Google Scholar
  93. Whitteridge, D.: Area 18 and the vertical meridian of the visual field. In: E. G. Ettlinger (ed.), Functions of the Corpus callosum. Ciba Foundation Study Group, No 20, p. 115–120. London: Churchill 1965.Google Scholar
  94. Wilson, W. A., and M. Mishkin: Comparison of the effects of inferotemporal and lateral occipital lesions on visually guided behavior in monkeys. J. comp. physiol. Psychol. 52, 10–17 (1959).Google Scholar
  95. Yarbus, A. L.: Eye movements and vision. New York: Plenum Press 1967.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Colwyn B. Trevarthen
    • 1
  1. 1.Center for Cognitive StudiesHarvard UniversityUSA

Personalised recommendations